Skip to main content

Class 11 Maths Chapter 4 Principle of Mathematical Induction

Exercise – 4.1

Prove the following by using the principle of mathematical induction for a line n ∈ N :

 Question 1.
1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 }
Solution.
Let the given statement be P(n) i.e.,
P(n) : 1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 1

Question 2.
{ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }
Solution.
Let the given statement be P(n) i.e.,
P(n) : { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 2
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 3

 Question 3.
1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) }
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+.\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 4
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 5

 Question 4.
1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 }
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 6
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 7

 Question 5.
1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 8
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 9

 Question 6.
1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right]
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right]
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 10
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 11

 Question 7.
1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 12
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 13
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 14

 Question 8.
1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 15
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 16

 Question 9
\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } }
Solution.
Let the given statement be P(n), i.e.,
P(n) : \frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } }
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 17

 Question 10.
\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) }
Solution.
Let the given statement be P(n), i.e.,
P(n) : \frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 18
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 19

 Question 11.
\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) }
Solution.
Let the given statement be P(n), i.e.,
P(n) : \frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) }
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 20
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 21

 Question 12.
a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 22

 Question 13.
\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : \left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 23
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 24

 Question 14.
\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 25
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 26

 Question 15.
{ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : { 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 }
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 27
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 28
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 29

 Question 16.
\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) }
Solution.
Let the given statement be P(n), i.e.,
P(n) : \frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 30
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 31

 Question 17.
\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) }
Solution.
Let the given statement be P(n), i.e.,
P(n) : \frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 32
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 33
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 34

 Question 18.
1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }
Solution.
Let the given statement be P(n), i.e.,
P(n) : 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 35

 Question 19.
n(n+1 )(n + 5) is a multiple of 3.
Solution.
Let the given statement be P(n), i.e.,
P(n): n(n + l)(n + 5) is a multiple of 3.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 36
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 37

 Question 20.
{ 10 }^{ 2n-1 }+1 is divisible by 11.
Solution.
Let the given statement be P(n), i.e.,
P(n): { 10 }^{ 2n-1 }+1 is divisible by 11
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 38

 Question 21.
{ x }^{ 2n }-{ y }^{ 2n } is divisible by x + y.
Solution.
Let the given statement be P(n), i.e.,
P(n): { x }^{ 2n }-{ y }^{ 2n } is divisible by x + y.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 39
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 40

 Question 22.
{ 3 }^{ 2n+2 }-8n-9 is divisible by 8.
Solution.
Let the given statement be P(n), i.e.,
P(n): { 3 }^{ 2n+2 }-8n-9 is divisible by 8.
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 41

 Question 23.
{ 41 }^{ n }-{ 14 }^{ n } is a multiple of 27.
Solution.
Let the given statement be P(n), i.e.,
P(n): { 41 }^{ n }-{ 14 }^{ n } is a multiple of 27.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 42
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 43

 Question 24.
\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }
Solution.
Let the given statement be P(n), i.e.,
P(n): \left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }
First we prove that the statement is true for n = 1.
tiwari academy class 11 maths Chapter 4 Principle of Mathematical Induction 44

Comments

Popular posts from this blog

Grammar Exercise - Tag Questions

She is collecting stickers, isn't she? We often watch TV in the afternoon, don't we? You have cleaned your bike, haven't you? John and Max don't like maths, do they? Peter played handball yesterday, didn't he? They are going home from school, aren't they? Mary didn't do her homework last Monday, did she? He could have bought a new car, couldn't he? Kevin will come tonight, won't he? I'm clever, aren't I? Choose the correct word. They're working on the project, aren't they? It wasn't my fault was it? Bill got what he wanted, didn't he? It won't be hard to convince her, will it? We can't leave him alone, can we? We've done our job, haven't we? You should apologize for what you have done, shouldn't you? They didn't start at two o'clock, did they? They finish work at five o'clock, don't they ? She doesn't like him, does she ? Difficult Question Tags Exercises

VERB AND FORMS OF VERB WITH HINDI MEANING_List of Verb in hindi

Verbs What is a verb? Verbs are the action words in a sentence that describe what the subject is doing. Along with nouns, verbs are the main part of a sentence or phrase, telling a story about what is taking place.     Verbs are words that express action or state of being. There are three types of verbs:  action verbs, linking verbs, and helping verbs .  Action verbs are words that express action (give, eat, walk, etc.) or possession (have, own, etc.). Action verbs can be either transitive or intransitive. List of Verb in hindi Present Hindi Meaning   Past Past Participle Buy खरीदना Bought Bought Build बांधना Built Built burn जलना Burnt Burnt Bend झुकना Bent Bent Bring लाना brought brought Become होना Became Become Come आना Came Come Catch पकड़ना Caught Caught Do करना Did Done Dream ख्वाब देखना Dreamt Dreamt Arise उठना / जागना Arose Arisen Be होना Was, were Been Bear सहन करना Bore Bore Beat मारना Beat Beat Bite काटना Bit Bitten Break तोडना Broke Broken Choose चुनना Chose Chosen Draw चि

Synonym-Antonym list with Hindi Meaning

S.No Word शब्द Synonym Antonym 1 Abate रोक-थाम करना moderate, decrease aggravate, supplement 2 Abject अधम despicable, servile, commendable, praiseworthy 3 Abjure त्यागना forsake, renounce, approve, sanction 4 Abortive निष्फल vain, unproductive, effectual productive 5 Absolve दोषमुक्त करना pardon, forgive , compel, accuse 6 Accord सहमति agreement, harmony , disagreement, discord 7 Acrimony रूखापन harshness, bitterness, courtesy, benevolence 8 Adamant अटल stubborn, inflexible , flexible, soft 9 Adherent पक्षपाती follower, disciple , rival, adversary 10 Adjunct सहायक joined, added , separated, subtracted 11 Admonish धिक्कारना counsel, reprove , approve, applaud 12 Adversity विपत्ति misfortune, calamity , prosperity, fortune 13 Alien विदेशी foreigner, outsider , native, resident 14 Allay निराकरणकरना pacify, soothe , aggravate, excite 15 Alleviate कम करना abate, relieve , aggrava