Exericse 5.7
Question 1.
x² + 3x + 2 = y(say)
Solution:
Question 2.
x20 = y(say)
Solution:
Question 3.
x.cos x = y(say)
Solution:
Question 4.
log x = y (say)
Solution:
Question 5.
x3 log x = y (say)
Solution:
x3 log x = y
Question 6.
ex sin5x = y
Solution:
ex sin5x = y
Question 7.
e6x cos3x = y
Solution:
e6x cos3x = y
Question 8.
tan-1 x = y
Solution:
Question 9.
log(logx) = y
Solution:
log(logx) = y
Question 10.
sin(log x) = y
Solution:
sin(log x) = y
Question 11.
If y = 5 cosx – 3 sin x, prove that
Solution:
Hence proved
Question 12.
If y = cos-1 x, Find in terms of y alone.
Solution:
Question 13.
If y = 3 cos (log x) + 4 sin (log x), show that
Solution:
Given that
y = 3 cos (log x) + 4 sin (log x)
Question 14.
Solution:
Given that
Question 15.
If y = 500e7x + 600e-7x, show that .
Solution:
we have
y = 500e7x + 600e-7x
Question 16.
If ey(x+1) = 1,show that
Solution:
Question 17.
If y=(tan-1 x)² show that (x²+1)²y2+2x(x²+1)y1=2
Solution:
we have
y=(tan-1 x)²
Exercise 5.8
Question 2.
Examine if Rolle’s theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s theorem from these example?
(i) f(x) = [x] for x ∈ [5,9]
(ii) f (x) = [x] for x ∈ [-2,2]
(iii) f (x) = x² – 1 for x ∈ [1,2]
Solution:
(i) In the interval [5, 9], f (x) = [x] is neither continuous nor derivable at x = 6,7,8 Hence Rolle’s theorem is not applicable
(ii) f (x) = [x] is not continuous and derivable at -1, 0, 1. Hence Rolle’s theorem is not applicable.
(iii) f(x) = (x² – 1),f(1) = 1 – 1 = 0,
f(2) = 22 – 1 = 3
f(a)≠f(b)
Though it is continous and derivable in the interval [1,2].
Rolle’s theorem is not applicable.
In case of converse if f (c)=0, c ∈ [a, b] then conditions of rolle’s theorem are not true.
(i) f (x) = [x] is the greatest integer less than or equal to x.
∴f(x) = 0, But fis neither continuous nor differentiable in the interval [5,9].
(ii) Here also, theough f (x) = 0, but f is neither continuous nor differentiable in the interval [-2,2].
(iii) f (x)=x² – 1, f'(x)=2x. Here f'(x) is not zero in the [1,2], So f (2) ≠ f’ (2).
Question 3.
If f: [-5,5] –>R is a differentiable function and if f (x) does not vanish anywhere then prove that f (- 5) ≠ f (5).
Solution:
For Rolle’s theorem
If (i) f is continuous in [a, b]
(ii) f is derivable in [a, b]
(iii) f (a) = f (b)
then f’ (c)=0, c e (a, b)
∴ f is continuous and derivable
but f (c) ≠ 0 =>f(a) ≠ f(b) i.e., f(-5)≠f(5)
Question 4.
Verify Mean Value Theorem, if
f (x) = x² – 4x – 3 in the interval [a, b], where a = 1 and b = 4.
Solution:
f (x) = x² – 4x – 3. It being a polynomial it is continuous in the interval [1,4] and derivable in (1,4), So all the condition of mean value theorem hold.
then f’ (x) = 2x – 4,
f’ (c) = 2c – 4
f(4)= 16 – 16 – 3 = – 3,
f(1)= 1 – 4 – 3 = – 6
Then there exist a value c such that
Question 5.
Verify Mean Value Theorem, if f (x)=x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1,3) for which f’ (c) = 0.
Solution:
f (x)=x3 – 5x2 – 3x,
It is a polynomial. Therefore it is continuous in the interval [1,3] and derivable in the interval (1,3)
Also, f'(x)=3x²-10x-3
Question 6.
Examine the applicability of Mean Value theroem for all three functions given in the above Question 2.
Solution:
(i) F (x)= [x] for x ∈ [5,9], f (x) = [x] in the interval [5, 9] is neither continuous, nor differentiable.
(ii) f (x) = [x], for x ∈ [-2,2],
Again f (x) = [x] in the interval [-2,2] is neither continous, nor differentiable.
(iii) f(x) = x²-1 for x ∈ [1,2], It is a polynomial. Therefore it is continuous in the interval [1,2] and differentiable in the interval (1,2)
f (x) = 2x, f(1) = 1 – 1 = 0 ,
f(2) = 4 – 1 = 3, f'(c) = 2c
Comments
Post a Comment