Skip to main content

Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.2, Exercise 5.3

Exercise  5.2

Differentiate the functions with respect to x in Questions 1 to 8.

 Question 1.
sin(x² + 5)
Solution:
Let y = sin(x² + 5),
put x² + 5 = t
y = sint
t = x²+5
\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx }
\frac { dy }{ dx } =cost.\frac { dt }{ dx } =cos({ x }^{ 2 }+5)\frac { d }{ dx } ({ x }^{ 2 }+5)
= cos (x² + 5) × 2x
= 2x cos (x² + 5)

Question 2.
cos (sin x)
Solution:
let y = cos (sin x)
put sinx = t
∴ y = cost,
t = sinx
\frac { dy }{ dx } =-sin\quad t,\frac { dt }{ dx } =cos\quad x
\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } =(-sint)\times cosx
Putting the value of t, \frac { dy }{ dx } =-sin(sinx)\times cosx
\frac { dy }{ dx } =-[sin(sinx)]cosx

 Question 3.
sin(ax+b)
Solution:
let = sin(ax+b)
put ax+bx = t
∴ y = sint
t = ax+b
\frac { dy }{ dt } =cost,\frac { dt }{ dx } =\frac { d }{ dx } (ax+b)=a
Now\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } =cost\times a=acos\quad t
\frac { dy }{ dx } =acos(ax+b)

 Question 4.
sec(tan(√x))
Solution:
let y = sec(tan(√x))
by chain rule
\frac { dy }{ dx } =sec(tan\sqrt { x } )tan(tan\sqrt { x } )\frac { d }{ dx } (tan\sqrt { x } )
\frac { dy }{ dx } =sec(tan\sqrt { x } ).tan(tan\sqrt { x } ){ sec }^{ 2 }\sqrt { x } .\frac { 1 }{ 2\sqrt { x } }

Question 5.
\\ \frac { sin(ax+b) }{ cos(cx+d) }
Solution:
y = \\ \frac { sin(ax+b) }{ cos(cx+d) }  = \\ \frac { v }{ u }
u = sin(ax+b)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 5
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 5.1

Question 6.

cos x³ . sin²(x5) = y(say)
Solution:
Let u = cos x³ and v = sin² x5,
put x³ = t
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 6

Question 7.
2\sqrt { cot({ x }^{ 2 }) } =y(say)
Solution:
2\sqrt { cot({ x }^{ 2 }) } =y(say)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 7

Question 8.
cos(√x) = y(say)
Solution:
cos(√x) = y(say)
\frac { dy }{ dx } =\frac { d }{ dx } cos\left( \sqrt { x } \right) =-sin\sqrt { x } .\frac { d\sqrt { x } }{ dx }
=-sin\sqrt { x } .\frac { 1 }{ 2 } { (x) }^{ -\frac { 1 }{ 2 } }=\frac { -sin\sqrt { x } }{ 2\sqrt { x } }
vedantu class 12 maths Chapter 5 Continuity and Differentiability 8

 Question 9.
Prove that the function f given by f (x) = |x – 1|,x ∈ R is not differential at x = 1.
Solution:
The given function may be written as
f(x)=\begin{cases} x-1,\quad if\quad x\ge 1 \\ 1-x,\quad if\quad x<1 \end{cases}
R.H.D\quad at\quad x=1\quad =\underset { h\rightarrow 0 }{ lim } \frac { f(1+h)-f(1) }{ h }

Question 10.
Prove that the greatest integer function defined by f (x)=[x], 0 < x < 3 is not differential at x = 1 and x = 2.
Solution:
(i) At x = 1
R.H.D=\underset { h\rightarrow 0 }{ lim } \frac { f(1+h)-f(1) }{ h }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 10

Exercise 5.3


Excercise  5.3

Find \\ \frac { dy }{ dx }  in the following

 Question 1.
2x + 3y = sinx
Solution:
2x + 3y = sinx
Differentiating w.r.t x,
2+3\frac { dy }{ dx } =cosx
=>\frac { dy }{ dx } =\frac { 1 }{ 3 } (cosx-2)

Question 2.
2x + 3y = siny
Solution:
2x + 3y = siny
Differentiating w.r.t x,
2+3.\frac { dy }{ dx } =cosy\frac { dy }{ dx }
=>\frac { dy }{ dx } =\frac { 2 }{ cosy-3 }

Question 3.
ax + by² = cosy
Solution:
ax + by² = cosy
Differentiate w.r.t. x,
a+2\quad by\quad \frac { dy }{ dx } =-siny\frac { dy }{ dx }
=>or\quad (2b+siny)\frac { dy }{ dx } =-a=>\frac { dy }{ dx } =-\frac { a }{ 2b+siny }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 3

 Question 4.
xy + y² = tan x + y
Solution:
xy + y² = tanx + y
Differentiating w.r.t. x,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 4

Question 5.
x² + xy + y² = 100
Solution:
x² + xy + xy = 100
Differentiating w.r.t. x,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 5

 Question 6.
x³ + x²y + xy² + y³ = 81
Solution:
Given that
x³ + x²y + xy² + y³ = 81
Differentiating both sides we get
byjus class 12 maths Chapter 5 Continuity and Differentiability 6

 Question 7.
sin² y + cos xy = π
Solution:
Given that
sin² y + cos xy = π
Differentiating both sides we get
2\quad sin\quad y\frac { d\quad siny }{ dx } +(-sinxy)\frac { d(xy) }{ dx } =0
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 7

 Question 8.
sin²x + cos²y = 1
Solution:
Given that
sin²x + cos²y = 1
Differentiating both sides, we get
byjus class 12 maths Chapter 5 Continuity and Differentiability 8

 Question 9.
y={ sin }^{ -1 }\left( \frac { 2x }{ { 1+x }^{ 2 } } \right)
Solution:
y={ sin }^{ -1 }\left( \frac { 2x }{ { 1+x }^{ 2 } } \right)
put x = tanθ
y={ sin }^{ -1 }\left( \frac { 2tan\theta }{ { 1+tan }^{ 2 }\theta } \right) ={ sin }^{ -1 }(sin2\theta )=2\theta
y={ 2sin }^{ -1 }x\quad \therefore \frac { dy }{ dx } =\frac { 2 }{ 1+{ x }^{ 2 } }

 Question 10.
y={ tan }^{ -1 }\left( \frac { { 3x-x }^{ 3 } }{ { 1-3x }^{ 2 } } \right) ,-\frac { 1 }{ \sqrt { 3 } } <x<\frac { 1 }{ \sqrt { 3 } }
Solution:
y={ tan }^{ -1 }\left( \frac { { 3x-x }^{ 3 } }{ { 1-3x }^{ 2 } } \right)
put x = tanθ
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 10

Question 11.
y={ cos }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
Solution:
y={ cos }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
put x = tanθ
y={ cos }^{ -1 }\left( \frac { 1-tan^{ 2 }\quad \theta }{ 1+{ tan }^{ 2 }\quad \theta } \right) ={ cos }^{ -1 }(cos2\theta )=2\theta
y={ 2tan }^{ -1 }x\quad \therefore \frac { dy }{ dx } =\frac { 2 }{ 1+{ x }^{ 2 } }

Question 12.
y={ sin }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
Solution:
y={ sin }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
put x = tanθ
we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 12

 Question 13.
y={ cos }^{ -1 }\left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) ,-1<x<1
Solution:
y={ cos }^{ -1 }\left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) ,-1<x<1
put x = tanθ
we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 13
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 13.1

 Question 14.
y=sin^{ -1 }\left( 2x\sqrt { 1-{ x }^{ 2 } } \right) ,-\frac { 1 }{ \sqrt { 2 } } <x<\frac { 1 }{ \sqrt { 2 } }
Solution:
y=sin^{ -1 }\left( 2x\sqrt { 1-{ x }^{ 2 } } \right) ,-\frac { 1 }{ \sqrt { 2 } } <x<\frac { 1 }{ \sqrt { 2 } }
put x = tanθ
we get
y=sin^{ -1 }\left( 2sin\quad \theta \sqrt { 1-{ x }^{ 2 } } \right)
y=sin^{ -1 }\left( 2sin\theta \quad cos\theta \right) \quad ={ sin }^{ -1 }(sin2\theta )\quad =2\theta
y=2sin^{ -1 }x\quad \therefore \frac { dy }{ dx } =\frac { 2 }{ \sqrt { { 1-x }^{ 2 } } }

Question 15.


y=sin^{ -1 }\left( \frac { 1 }{ { 2x }^{ 2 }-1 } \right) ,0<x<\frac { 1 }{ \sqrt { 2 } }
Solution:
y=sin^{ -1 }\left( \frac { 1 }{ { 2x }^{ 2 }-1 } \right) ,0<x<\frac { 1 }{ \sqrt { 2 } }
put x = tanθ
we get
y=sec^{ -1 }\left( \frac { 1 }{ { 2cos }^{ 2 }\theta -1 } \right) ={ sec }^{ -1 }\left( \frac { 1 }{ cos2\theta } \right)
y=sec^{ -1 }(sec2\theta )=2\theta ,\quad y=2{ cos }^{ -1 }x
\therefore \frac { dy }{ dx } =\frac { -2 }{ \sqrt { { 1-x }^{ 2 } } }


Comments

Popular posts from this blog

VERB AND FORMS OF VERB WITH HINDI MEANING_List of Verb in hindi

Verbs What is a verb? Verbs are the action words in a sentence that describe what the subject is doing. Along with nouns, verbs are the main part of a sentence or phrase, telling a story about what is taking place.     Verbs are words that express action or state of being. There are three types of verbs:  action verbs, linking verbs, and helping verbs .  Action verbs are words that express action (give, eat, walk, etc.) or possession (have, own, etc.). Action verbs can be either transitive or intransitive. List of Verb in hindi Present Hindi Meaning   Past Past Participle Buy खरीदना Bought Bought Build बांधना Built Built burn जलना Burnt Burnt Bend झुकना Bent Bent Bring लाना brought brought Become होना Became Become Come आना Came Come Catch पकड़ना Caught Caught Do करना Did Done Dream ख्वाब देखना Dreamt Dreamt Arise उठना / जागना Arose Arisen Be होना Was, were Been Bear सहन करना Bore Bore Beat मारना Beat Beat Bite काटना Bit Bitten Break तोडना Broke Broken Choose चु...

Synonym-Antonym list with Hindi Meaning

S.No Word शब्द Synonym Antonym 1 Abate रोक-थाम करना moderate, decrease aggravate, supplement 2 Abject अधम despicable, servile, commendable, praiseworthy 3 Abjure त्यागना forsake, renounce, approve, sanction 4 Abortive निष्फल vain, unproductive, effectual productive 5 Absolve दोषमुक्त करना pardon, forgive , compel, accuse 6 Accord सहमति agreement, harmony , disagreement, discord 7 Acrimony रूखापन harshness, bitterness, courtesy, benevolence 8 Adamant अटल stubborn, inflexible , flexible, soft 9 Adherent पक्षपाती follower, disciple , rival, adversary 10 Adjunct सहायक joined, added , separated, subtracted 11 Admonish धिक्कारना counsel, reprove , approve, applaud 12 Adversity विपत्ति misfortune, calamity , prosperity, fortune 13 Alien विदेशी foreigner, outsider , native, resident 14 Allay निराकरणकरना pacify, soothe , aggravate, excite 15 Alleviate कम करना abate, relieve , aggrava...

Class 10 Maths Chapter 6 Triangles

Triangles Ex 6.1 Question 1. Fill in the blanks by using the correct word given in brackets. (i) All circles are ……………. . (congruent/similar) (ii) All squares are …………… . (similar/congruent) (iii) All …………….. triangles are similar. (isosceles/equilateral) (iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are …………… and (b) their corresponding sides are …………… (equal/proportional) Solution: Question 2. Give two different examples of pair of (i) similar figures. (ii) non-similar figures. Solution: Question 3. State whether the following quadrilaterals are similar or not. Solution: Triangles Ex 6.2 Question 1. In the given figure (i) and (ii), DE || BC. Find EC in (i) and AD in (ii). Solution: Question 2. E and F are points on the sides PQ and PR respectively of a ∆PQR. For each of the following cases, state whether EF || QR: (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm (ii) PE = 4 cm, QE = 4....