Skip to main content

Class 9 Maths Chapter 6 Lines and Angles

Exercise 6.1

 Question 1.
I
n the figure, lines AB and CD intersect at O. If ∠AOC + BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles
Solution:
Here,AOC and BOD are vertically opposite angles.
∴  AOC =  BOD
 AOC –  40° [BOD=40° (Given)]…(i)
We have, AOC + BOE = 70° (Given)
40° + BOE =   70° [from eq.(1)]
⇒ ∠BOE =    30°
Also, AOC + COE + BOE = 180° (Linear pair axiom)
  40° + COE + 30° = 180°, COE=110°
Now,  COE + reflex COE = 360° (Angles at a point)
110° + reflex COE = 360°
 Reflex COE = 250°

 Question 2.
In figure lines XY and MN intersect at O. If POY = 90° and a: b = 2: 3 find c.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 1
Solution:
We have, POY = 90°
⇒ ∠POY + POX = 180° (Linear pair axiom)
⇒ ∠POX = 90°
⇒ a + b= 90°……….(i)
Also a : b = 2 : 3        (Given)
⇒ Let   a = 2x, b = 3x
Now, from Eq. (i), we get
2x +3x= 90° ⇒ 5x = 90° ⇒ x = 18°
∴ a = 2 x 18° = 36°
and b = 3 x 18°= 54°
Now, MOX + XON = 180° b + c = 180°
⇒ 54° + c = 180°
⇒ c = 126°

 Question 3.
In the given figure, PQR = PRQ, then prove that PQS = PRT.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 2
Solution:
PQS +PQR =180°   [linear Pair] …………(i)
PRT + PRQ = 180°  [linear Pair] …………(ii)
From eqs. (i) and (ii), we have
PQS + PQR =PRT + PRQ
⇒  PQS = PRT   [∵ PQR = PRQ (given)]

 Question 4.
In the given figure, if x + y= w + z, then prove that AOB is a line.
Solution:
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 3
We know that, sum of all the angles around a point is 360°.
∴  x + y + z + w = 360°
⇒ (x + y) + (z + w) = 360°
⇒ (x + y) + (x + y)= 360° [ ∵ x + y = z + w, given]
⇒ 2(x + y) = 360°
⇒ (x + y)=\cfrac { 360 }{ 2 } ⇒ x + y = 180°
So, AOB is a straight line
Hence proved.

 Question 5.
In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that
ROS =  \cfrac { 1 }{ 2 } (QOS – POS)
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 4
Solution:
We have,  POR = ROQ = 90° (∵ Given that, OR is perpendicular to PQ)
∴  POS + ROS = 90°
⇒  ROS = 90°- POS
On adding ZROS both sides, we get
⇒ ROS = 90°-POS + ROS
⇒  2ROS = (90°  + ROS) – POS
⇒ 2ROS = QOS – POS
(∵ QOS = ROQ + ROS = 90° + ROS)
⇒  ROS = \cfrac { 1 }{ 2 } (QOS –POS) Hence proved.

 Question 6.
It is given that XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ZYP, find XYQ and reflex QYP.
Solution:
Here, YQ bisects ZYP.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 5
Hence ZYQ  = \cfrac { 1 }{ 2 } QYP = ZYP  ………..(i)
Given,    XYZ =  64° …………(ii)
∵ XYZ + ZYQ + QYP = 180°  (Linear pair axiom)
⇒ 64° + ZYQ + ZYQ = 180°    [From eq .(i) a and(ii)]
⇒ 2ZYQ =  180°-64°
⇒ ∠ZYQ = \cfrac { 1 }{ 2 } x 116° ⇒ ZYQ – 58°
∴  XYQ =  XYZ + ZYQ
⇒ 64° + 58° = 122°
Now, QYZ + reflex QYP = 360°
58° + reflex QYP – 360°    ⇒ reflex QYP = 302

 

Exercise 6.2

 Question 1.
In the given figure, find the values of x and y and then show that  AB||CD.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 6
Solution:
Here, l is a straight line,
So, x + 50° = 180° [by linear pair axiom]
⇒ x = 180° – 50° = 130°
Now, line l and CD intersect each other at a point.
So,          y=130°                       [vertically opposite angles]
Thus,     x = y = 130°               [alternate interior angles]
Hence,   AB || CD                     [by theorem 2] Hence proved.

 Question 2.
In the given figure, if AB || CD, CD || EF and y :z = 3: 7, then find the value of x.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 7
Solution:
Given, AB || CD and CD || EF
∴      AB ||EF
[since, lines which are parallel to the same line, are parallel to each other]
Then,   x= z              [alternate interior angles] … (i)
Also, given that y : z = 3 :7
⇒ y : x =3:7                                 [from eq. (i)] …(ii)
Let y = 3a and x=7a
Now, AB || CD
x + y= 180° [since, interior angles are supplementary]
⇒ 7a +3a = 180°⇒ 10a = 180° ⇒ a =\cfrac { 180 }{ 10 }  = 18°
Hence, x = 7a = (7 x 18)° = 126°

 Question 3.
In the given figure, if AB || CD, FE ⊥ CD, and GED = 126°, find AGE, GEF and FGE.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 8
Solution:
Given, AB || CD, EF ⊥ CD and GE is a transversal.
.’.    AGE = GED [alternate interior angles]
AGE = 126° [AGE =126° given]
GEF = GED – FED
⇒ ∠GEF = 126° – 90° [∵  FE ⊥ CD => FED = 90°]
⇒ ∠GEF= 36°
Also, AB is a straight line and EG is a ray on it.
So, FGE + AGE = 180° [By linear pair axiom)
⇒  FGE +126° = 180° [ ∵ AGE= 126°]
⇒  FGE = 180° -126° = 54°
Hence, AGE = 126°, GEF = 36° and FGE =54°.

 Question 4.
In the given figure, if PQ || ST, PQR = 110° and RST = 130°, find QRS.
[Hint: Draw a line parallel to ST through point R.]
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 9
Solution:
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 10
Given, PQ || ST, PQR = 110° and RST = 130°
Draw a line AB parallel to ST through R.
Now, ST || AB and SR is a transversal.
So, RST + SRB = 180°[since, sum of the interior angles on the same side of the transversal is 180°]
 ⇒ 130° + SRB = 180° ⇒ SRB = 180°-130°
⇒  SRB = 50°    …(i)
Since, PQ || ST and AB || ST, so PQ || AB and then QR is a transversal.
So, PQR + QRA = 180° [since, sum of the interior angles on the same side of the transversal is 180°] ⇒ 110° + QRA = 180° ⇒ QRA = 180° -110°
⇒ ∠QRA=70°  ..(ii)
Now, ARB is a line.
∴  QRA + QRS + SRB = 180° [by linear pair axiom]
⇒ = 70° + QRS + 50° = 180° ⇒ 120° + QRS = 180°
⇒ => QRS = 180° -120° ⇒ QRS = 60°

 Question 5.
In the given figure, if AB||CD, APQ 50° and PRD = 127°, find x and y.
Solution:
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 11
Given, APQ = 50° and PRD = 127°
In the given figure,
AB || CD and PQ is a transversal.
∴ APQ + PQC = 180°
[Since, pair of consecutive interior angles on the same side of the transversal is 180°]
⇒ 50° + PQC = 180°  [∴ APQ = 50°, given]
⇒ ∠PQC = 180° -50° = 130°
Now, CD is a straight line and QP is a ray on it
So, PQC + PQR = 180° [by linear pair axiom]
⇒ 130° + PQR = 180°   [∴ PQC = 130°]
⇒  PQR = 180° -130° = 50°
∴  x = 50°    [∴ PQR = x]
Also, AB || CD and PR is a transversal.
So, APR = PRD  [alternate interior angles]
⇒ 50° + y = 127°  [∴ APR = APQ + QPR = 50°+y]
⇒ y = 127° – 50°  ⇒ y=77°
Hence, x = 50° and y = 77°.

 Question 6.
In the given figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that
AB || CD.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 12
Solution:
Draw BE ⊥ PQ and CF ⊥ L RS.
⇒ BE || CF
Also,  a= b      …(i)  [∵ angle of incidence = angle of reflection]
and    x= y   …(ii) [∵ angle of incidence = angle of reflection]
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 13
Since, BE ||CF and BC is transversal.
∴ b= x    [alternate interior angles]
⇒ 2b = 2x   [multiplying by 2 on both sides]
⇒ ∠b + b = x + x
⇒ ∠a + b = x + y                    [from eqs. (i) and (ii)]
⇒  ABC = DCB
which are alternate interior angles.
Hence, AB || BC Hence proved.

 

Exercise 6.3

 Question 1.
In the given figure, sides QP and RQ of ΔPQR are produced to points S and T respectively.
If SPR = 135° and PQT = 110°, find PRQ.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 14
Solution:
RPS + RPQ = 180 °
135° + RPQ = 180°  [∵ RPS = 135° (given)]
⇒  RPQ = 180°-135° = 45°
Now, RPQ + PRQ = PQT  [ext. angle = sum of int. opp. angles]
⇒ 45° + PRQ = 110°
⇒ ∠PRQ = 110° – 45° = 65°

 Question 2.
In the given figure, X= 62°,XYZ= 54°. If YO and ZO are the bisectors of XYZ and XZY respectively of ΔXYZ, find OZY and YOZ.
Solution:
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 15
Given, X = 62° and XYZ = 54°
In ΔXYZ, XYZ + YXZ + XZY = 180° [since a sum of all the angles of a triangle is 180°]
54°+62°+180° 116°+XYZ =18O°
XZY=180°-116°
∴  XZY = 64°
Also, given that YO and ZO are the bisectors of XYZ and XZY, respectively.
So, OYZ = \cfrac { 1 }{ 2 } XYZ => ∠OYZ \cfrac { 1 }{ 2 } x 54° = 27°
and OZY = \cfrac { 1 }{ 2 } XZY= \cfrac { 1 }{ 2 } x 64°= OZY=32°
Now, in ΔOYZ, OYZ + OZY + YOZ = 180° [since, sum of all the angles of a triangle Is 180°]
27° + 32° + YOZ = 180°
59°+YOZ = 180°  YOZ = 180°—59°
∴ ∠YOZ = 121°
Hence,OZY = 32° and YOZ = 121°

 Question 3.
In figure,If AB DE, BAC= 35°and CDE= 53°,find DCE.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 16
Solution:
We have, AB || DE
  AED =  BAE (Alternate interior angles)
Now, BAE = BAC
⇒  ∠BAE=35° [ ∵ BAC = 35°Given)]
AED = 35°
In Δ DCE,
∴ DCE + CED+ EDC = 180°, (∵ Sum of all angles of triangle is equal to 180°)
⇒ ∠DCE + 35° + 53° – 180°         (∵AED = CED = 35°)
⇒  DCE = 180 °-(35° + 53° ) ⇒  DCE = 92°

 Question 4.
In the given figure, if lines PQ and RS intersect at point T such that PRT = 40°, RPT = 95°
and TSQ = 75° then find SQT.
study rankers class 9 maths Chapter 6 Lines and Angles 17
Solution:
Given, PRT = 40°, RPT = 95° and
TSQ = 75°
In Δ PRT, PRT + RPT + PTR = 180°          …(i) [since, sum of all the angles of a triangle is 180°]
On putting PRT =40° and RPT = 95° in eq. (i), we get
40° + 95° + PTR = 180°
⇒ 135° + PTR = 180°  PTR = 180° -135° ⇒ ∠PTR = 45°
Now, PTR    = QTS [vertically opposite angles]
 ∴ ∠QTS – 45°
In TQS, QTS + TSQ + TQS = 180°   … (ii)
[since, sum of all the angles of a triangle is 180°]
On putting QTS = 45° and TSQ = 75° in eq. (ii), we get
45° + 75° + TQS = 180° 120° + TQS = 180°
⇒  ∠TQS    – 180°-120°
 ∴  ∠TQS    =60°
Hence,TQS    = SQT = 60°

 Question 5.
In the given figure, if PQ ⊥ PS, PQ || SR, SQR – 28° and QRT – 65° then find the values of x and y.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 18
Solution:
For Δ QSR, QRT is an exterior angle
QRT = SQR + QSR [∵  exterior angle = sum of interior opposite angles]
⇒ 65° = 28° + QSR [∵ QRT = 65° and SQR = 28°, given]
QSR = 65° – 28°  QSR = 37°
Given PQ || SR and SQ is the transversal which intersects PQ and ST at Q and S, respectively.
∴ QSR = PQS  [alternate interior angles]
⇒  x = 37°
Now, in ΔPQS, SPQ + PQS + PSQ = 180°[since, sum of all the angles of a triangle is 180°]
⇒    90° + 37° + y = 180°   [∵ PQ ⊥ PS ⇒ ∠SPQ = 90°]
⇒    127° + y= 180°⇒ y = 180° -127° = 53°
Hence, x = 37° and y= 53°.

 Question 6.
In the given figure, the side QR of ΔPQR is produced to a point S. If the bisectors of PQR and PRS meet at point T, then prove that QTR = \cfrac { 1 }{ 2 } QPR.
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 21
Solution:
In ΔTQR, QTR + TQR + QRT = 180[sum of all the angles of a triangle is 180°]
QRT = 180– [TQR + QRT]
PQR + QRP + PRT
study rankers class 9 maths Chapter 6 Lines and Angles 19
NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles 20


Comments

Popular posts from this blog

VERB AND FORMS OF VERB WITH HINDI MEANING_List of Verb in hindi

Verbs What is a verb? Verbs are the action words in a sentence that describe what the subject is doing. Along with nouns, verbs are the main part of a sentence or phrase, telling a story about what is taking place.     Verbs are words that express action or state of being. There are three types of verbs:  action verbs, linking verbs, and helping verbs .  Action verbs are words that express action (give, eat, walk, etc.) or possession (have, own, etc.). Action verbs can be either transitive or intransitive. List of Verb in hindi Present Hindi Meaning   Past Past Participle Buy खरीदना Bought Bought Build बांधना Built Built burn जलना Burnt Burnt Bend झुकना Bent Bent Bring लाना brought brought Become होना Became Become Come आना Came Come Catch पकड़ना Caught Caught Do करना Did Done Dream ख्वाब देखना Dreamt Dreamt Arise उठना / जागना Arose Arisen Be होना Was, were Been Bear सहन करना Bore Bore Beat मारना Beat Beat Bite काटना Bit Bitten Break तोडना Broke Broken Choose चु...

Synonym-Antonym list with Hindi Meaning

S.No Word शब्द Synonym Antonym 1 Abate रोक-थाम करना moderate, decrease aggravate, supplement 2 Abject अधम despicable, servile, commendable, praiseworthy 3 Abjure त्यागना forsake, renounce, approve, sanction 4 Abortive निष्फल vain, unproductive, effectual productive 5 Absolve दोषमुक्त करना pardon, forgive , compel, accuse 6 Accord सहमति agreement, harmony , disagreement, discord 7 Acrimony रूखापन harshness, bitterness, courtesy, benevolence 8 Adamant अटल stubborn, inflexible , flexible, soft 9 Adherent पक्षपाती follower, disciple , rival, adversary 10 Adjunct सहायक joined, added , separated, subtracted 11 Admonish धिक्कारना counsel, reprove , approve, applaud 12 Adversity विपत्ति misfortune, calamity , prosperity, fortune 13 Alien विदेशी foreigner, outsider , native, resident 14 Allay निराकरणकरना pacify, soothe , aggravate, excite 15 Alleviate कम करना abate, relieve , aggrava...

Class 10 Maths Chapter 6 Triangles

Triangles Ex 6.1 Question 1. Fill in the blanks by using the correct word given in brackets. (i) All circles are ……………. . (congruent/similar) (ii) All squares are …………… . (similar/congruent) (iii) All …………….. triangles are similar. (isosceles/equilateral) (iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are …………… and (b) their corresponding sides are …………… (equal/proportional) Solution: Question 2. Give two different examples of pair of (i) similar figures. (ii) non-similar figures. Solution: Question 3. State whether the following quadrilaterals are similar or not. Solution: Triangles Ex 6.2 Question 1. In the given figure (i) and (ii), DE || BC. Find EC in (i) and AD in (ii). Solution: Question 2. E and F are points on the sides PQ and PR respectively of a ∆PQR. For each of the following cases, state whether EF || QR: (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm (ii) PE = 4 cm, QE = 4....