Skip to main content

Class 12 Maths Chapter 7 Integrals (DEFINITE INTEGRALS) EX 7.8 TO EX 7.11

Exercise 7.8

Evaluate the following definite integral as limit of sums.


 Question 1.
\int _{ a }^{ b }{ x\quad dx }
Solution:
on comparing
\int _{ a }^{ b }{ x\quad dx } \quad with\quad \int _{ a }^{ b }{ f(x)dx }
we have
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 1

Question 2
\int _{ 0 }^{ 5 }{ (x+1)dx }
Solution:
on comparing
\int _{ 0 }^{ 5 }{ (x+1)dx } \quad with\quad \int _{ 0 }^{ 5 }{ f(x)dx }
we have f(x) = x+1, a = 0, b = 5
and nh = b-a = 5-0 = 5
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 2

Question 3.
\int _{ 2 }^{ 3 }{ { x }^{ 2 } } dx
Solution:
compare
\int _{ 2 }^{ 3 }{ { x }^{ 2 } } dx\quad with\quad \int _{ a }^{ b }{ f({ x }) } dx
we have
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 3

Question 4.
\int _{ 1 }^{ 4 }{ ({ x }^{ 2 }-x) } dx
Solution:
compare
\int _{ 1 }^{ 4 }{ ({ x }^{ 2 }-x) } dx\quad with\quad \int _{ a }^{ b }{ f({ x }) } dx
we have f(x) = x²-x and a = 1, b = 4
vedantu class 12 maths Chapter 7 Integrals 4

Question 5.
\int _{ -1 }^{ 1 }{ { e }^{ x } } dx\quad
Solution:
compare
\int _{ -1 }^{ 1 }{ { e }^{ x } } dx\quad with\quad \int _{ a }^{ b }{ f({ x }) } dx
we have
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 5
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 5.1

Question 6.
\int _{ 0 }^{ 4 }{ { (x+e }^{ 2x }) } dx\quad
Solution:
let f(x) = x + e2x,
a = 0, b = 4
and nh = b – a = 4 – 0 = 4

Exercise 7.9

Evaluate the definite integrals in Exercise 1 to 20.

Question 1.
\int _{ -1 }^{ 1 }{ { (x+1 }) } dx\quad
Solution:
{ =\left[ \frac { { x }^{ 2 } }{ 2 } +x \right] }_{ -1 }^{ 1 }=\frac { 1 }{ 2 } (1-1)+(1+1)\quad =2

Question 2.
\int _{ 2 }^{ 3 }{ \frac { 1 }{ x } dx }
Solution:
={ \left[ log\quad x \right] }_{ 2 }^{ 3 }\quad =log3-log2\quad =log\frac { 3 }{ 2 }

Question 3.
\int _{ 1 }^{ 2 }{ \left( { 4x }^{ 3 }-{ 5x }^{ 2 }+6x+9 \right) dx }
Solution:
={ \left[ \frac { { 4x }^{ 4 } }{ 4 } -\frac { { 5x }^{ 3 } }{ 3 } +\frac { { 6x }^{ 2 } }{ 2 } +9x \right] }_{ 1 }^{ 2 }
={ \left[ { x }^{ 4 }-\frac { 5 }{ 3 } { x }^{ 3 }+{ 3x }^{ 2 }+9x \right] }_{ 1 }^{ 2 }\quad =\frac { 64 }{ 3 }

Question 4.
\int _{ 0 }^{ \frac { \pi }{ 4 } }{ sin2x\quad dx }
Solution:
={ \left[ -\frac { 1 }{ 2 } cos2x \right] }_{ 0 }^{ \frac { \pi }{ 4 } }\quad =\frac { 1 }{ 2 }

Question 5.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ cos2x\quad dx }
Solution:
={ \left[ \frac { 1 }{ 2 } sin2x \right] }_{ 0 }^{ \frac { \pi }{ 2 } }\quad =0

Question 6.
\int _{ 4 }^{ 5 }{ { e }^{ x }dx }
Solution:
={ \left[ { e }^{ x } \right] }_{ 4 }^{ 5 }\quad ={ e }^{ 5 }-{ e }^{ 4 }

Question 7.
\int _{ 0 }^{ \frac { \pi }{ 4 } }{ tanx\quad dx }
Solution:
={ \left[ log\quad secx \right] }_{ 0 }^{ \frac { \pi }{ 4 } }\quad =\frac { 1 }{ 2 } log2

Question 8.
\int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 4 } }{ cosec\quad xdx }
Solution:
=log{ \left( cosecx-cotx \right) }_{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 4 } }
=log(\sqrt { 2 } -1)-log(2-\sqrt { 3 } )\quad =log\left( \frac { \sqrt { 2 } -1 }{ 2-\sqrt { 3 } } \right)

Question 9.
\int _{ 0 }^{ 1 }{ \frac { dx }{ \sqrt { 1-{ x }^{ 2 } } } }
Solution:
={ sin }^{ -1 }(1)-{ sin }^{ -1 }(0)\quad =\frac { \pi }{ 2 }

Question 10.
\int _{ 0 }^{ 1 }{ \frac { dx }{ 1+{ x }^{ 2 } } }
Solution:
={ \left[ { tan }^{ -1 }x \right] }_{ 0 }^{ 1 }\quad ={ tan }^{ -1 }(1)-{ ta }n^{ -1 }(0)\quad =\frac { \pi }{ 4 }

Question 11.
\int _{ 2 }^{ 3 }{ \frac { dx }{ { x }^{ 2 }-1 } }
Solution:
={ \left[ \frac { 1 }{ 2 } log\left( \frac { x-1 }{ x+1 } \right) \right] }_{ 2 }^{ 3 }\quad =\frac { 1 }{ 2 } log\frac { 3 }{ 2 }

Question 12.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { cos }^{ 2 } } xdx
Solution:
=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { \frac { 1+cos2x }{ 2 } } } dx=\frac { 1 }{ 2 } { \left[ x+\frac { sin2x }{ 2 } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }=\frac { \pi }{ 4 }

Question 13.
\int _{ 2 }^{ 3 }{ \frac { x }{ { x }^{ 2 }+1 } } dx
Solution:
=\frac { 1 }{ 2 } \int _{ 2 }^{ 3 }{ \frac { 2x }{ { x }^{ 2 }+1 } } dx\quad =\frac { 1 }{ 2 } { \left[ log\left( { x }^{ 2 }+1 \right) \right] }_{ 2 }^{ 3 }\quad =\frac { 1 }{ 2 } log2

Question 14.
\int _{ 0 }^{ 1 }{ \frac { 2x+3 }{ { 5x }^{ 2 }+1 } dx }
Solution:
=\frac { 1 }{ 5 } \int _{ 0 }^{ 1 }{ \frac { 10x }{ { 5x }^{ 2 }+1 } dx } +\frac { 3 }{ 5 } \int _{ 0 }^{ 1 }{ \frac { dx }{ { { x }^{ 2 }+\left[ \frac { 1 }{ \sqrt { 5 } } \right] }^{ 2 } } }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 14

Question 15.
\int _{ 0 }^{ 1 }{ { xe }^{ { x }^{ 2 } }dx }
Solution:
let x² = t ⇒ 2xdx = dt
when x = 0, t = 0 & when x = 1,t = 1
\therefore I=\frac { 1 }{ 2 } \int _{ 0 }^{ 1 }{ { e }^{ t }dt } \quad =\frac { 1 }{ 2 } { \left( { e }^{ t } \right) }_{ 0 }^{ 1 }\quad =\frac { 1 }{ 2 } [e-1]

Question 16.
\int _{ 1 }^{ 2 }{ \frac { { 5x }^{ 2 } }{ { x }^{ 2 }+4x+3 } dx }
Solution:
\int _{ 1 }^{ 2 }{ \left( 5-\frac { 20x+15 }{ { x }^{ 2 }+4x+3 } \right) dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 16

Question 17.
\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \left( { 2sec }^{ 2 }x+{ x }^{ 3 }+2 \right) dx }
Solution:
={ \left[ 2tanx+\frac { { x }^{ 4 } }{ 4 } +2x \right] }_{ 0 }^{ \frac { \pi }{ 4 } }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 17

Question 18.
\int _{ 0 }^{ \pi }{ \left( { sin }^{ 2 }\frac { x }{ 2 } -{ cos }^{ 2 }\frac { x }{ 2 } \right) } dx
Solution:
=-\int _{ 0 }^{ \pi }{ cosx } dx\quad =-{ \left[ sinx \right] }_{ 0 }^{ \pi }-(0-0)\quad =0

Question 19.
\int _{ 0 }^{ 2 }{ \frac { 6x+3 }{ { x }^{ 2 }+4 } } dx
Solution:
=\int _{ 0 }^{ 2 }{ \frac { 6x }{ { x }^{ 2 }+4 } } dx+\int _{ 0 }^{ 2 }{ \frac { 3 }{ { x }^{ 2 }+4 } dx }
byjus class 12 maths Chapter 7 Integrals 19

Question 20.
\int _{ 0 }^{ 1 }{ \left( { xe }^{ x }+sin\frac { \pi x }{ 4 } \right) dx }
Solution:
=\int _{ 0 }^{ 1 }{ { xe }^{ x }dx } +\int _{ 0 }^{ 1 }{ sin\frac { \pi x }{ 4 } } dx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 20

Question 21.
\int _{ 1 }^{ \sqrt { 3 } }{ \frac { dx }{ { 1+x }^{ 2 } } \quad equals }
(a) \frac { \pi }{ 3 }
(b) \frac { 2\pi }{ 3 }
(c) \frac { \pi }{ 6 }
(d) \frac { \pi }{ 12 }
Solution:
(d) \int _{ 1 }^{ \sqrt { 3 } }{ \frac { dx }{ { 1+x }^{ 2 } } } \quad ={ \left[ { tan }^{ -1 }x \right] }_{ 1 }^{ \sqrt { 3 } }\quad =\frac { \pi }{ 3 } -\frac { \pi }{ 4 } \quad =\frac { \pi }{ 12 }

Question 22.
\int _{ 0 }^{ \frac { 2 }{ 3 } }{ \frac { dx }{ 4+{ 9x }^{ 2 } } equals }
(a) \frac { \pi }{ 6 }
(b) \frac { \pi }{ 12 }
(c) \frac { \pi }{ 24 }
(d) \frac { \pi }{ 4 }
Solution:
(c) \int _{ 0 }^{ \frac { 2 }{ 3 } }{ \frac { dx }{ 4+{ 9x }^{ 2 } } } \quad =\frac { 1 }{ 9 } \int _{ 0 }^{ \frac { 2 }{ 3 } }{ \frac { dx }{ { \left( \frac { 2 }{ 3 } \right) }^{ 2 }+{ x }^{ 2 } } }
=\frac { 1 }{ 6 } { \left[ { tan }^{ -1 }\left( \frac { 3x }{ 2 } \right) \right] }_{ 0 }^{ \frac { 2 }{ 3 } }\quad =\frac { 1 }{ 6 } \times \frac { \pi }{ 4 } \quad =\frac { \pi }{ 24 }

Exercise 7.10

Evaluate the integrals in Exercises 1 to 8 using substitution.

Question 1.
\int _{ 0 }^{ 1 }{ \frac { x }{ { x }^{ 2 }+1 } } dx=I
Solution:
Let x² + 1 = t
⇒2xdx = dt
when x = 0, t = 1 and when x = 1, t = 2
\therefore I=\frac { 1 }{ 2 } \int _{ 0 }^{ 1 }{ \frac { dt }{ t } } ={ \left[ \frac { 1 }{ 2logt } \right] }_{ 1 }^{ 2 }\quad =\frac { 1 }{ 2 } log2

Question 2.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sqrt { sin\phi } { cos }^{ 5 }\phi d\phi =I }
Solution:
I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sqrt { sin\phi } { (1-{ sin }^{ 2 }) }^{ 2 }cos\phi d\phi }
put sinφ = t,so that cosφdφ = dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 2

Question 3.
\int _{ 0 }^{ 1 }{ { sin }^{ -1 } } \left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) dx=I
Solution:
let x = tanθ =>dx = sec²θ dθ
when x = 0 => θ = 0
and when x = 1 => \theta \frac { \pi }{ 4 }
\frac { 1 }{ 2 }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 3

Question 4.
\int _{ 0 }^{ 2 }{ x\sqrt { x+2 } } dx=I(say)(put\quad x+2={ t }^{ 2 })
Solution:
let x+2 = t =>dx = dt
when x = 0,t = 2 and when x = 2, t = 4
tiwari academy class 12 maths Chapter 7 Integrals 4

Question 5.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { sinx\quad dx }{ 1+{ cos }^{ 2 }x } =I }
Solution:
put cosx = t
so that -sinx dx = dt
when x = 0, t = 1; when x=\frac { \pi }{ 2 }, t = 0
\therefore I=\int _{ 1 }^{ 0 }{ \frac { -dt }{ 1+{ t }^{ 2 } } =-{ \left[ { tan }^{ -1 }t \right] }_{ 1 }^{ 0 } } =\frac { \pi }{ 4 }

Question 6.
\int _{ 0 }^{ 2 }{ \frac { dx }{ x+4-{ x }^{ 2 } } =I }
Solution:
\int _{ 0 }^{ 2 }{ \frac { dx }{ x+4-{ x }^{ 2 } } =I }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 6

Question 7.
\int _{ -1 }^{ 1 }{ \frac { dx }{ { x }^{ 2 }+2x+5 } =I }
Solution:
I=\int _{ -1 }^{ 1 }{ \frac { dx }{ { (x+1) }^{ 2 }+{ 2 }^{ 2 } } } =\frac { 1 }{ 2 } { \left[ { tan }^{ -1 }\frac { x+1 }{ 2 } \right] }_{ -1 }^{ 1 }\quad =\frac { \pi }{ 8 }

Question 8.
\int _{ 1 }^{ 2 }{ \left[ \frac { 1 }{ x } -\frac { 1 }{ { 2x }^{ 2 } } \right] { e }^{ 2x }dx } =I
Solution:
let 2x = t ⇒ 2dx = dt
when x = 1, t = 2 and when x = 2, t = 4
I=\int _{ 2 }^{ 4 }{ e } ^{ t }\left( \frac { 1 }{ t } -\frac { 1 }{ { t }^{ 2 } } \right) dt\quad ={ e }^{ t }{ \left[ \frac { 1 }{ t } \right] }_{ 2 }^{ 4 }\quad =\frac { e^{ 2 } }{ 2 } \left[ \frac { { e }^{ 2 } }{ 2 } -1 \right]

Choose the correct answer in Exercises 9 and 10

Question 9.
The value of integral \int _{ \frac { 1 }{ 3 } }^{ 1 }{ \frac { { { (x-x }^{ 3 }) }^{ \frac { 1 }{ 3 } } }{ { x }^{ 4 } } dx } is
(a) 6
(b) 0
(c) 3
(d) 4
Solution:
(a) let I = \int _{ \frac { 1 }{ 3 } }^{ 1 }{ \frac { { { (x-x }^{ 3 }) }^{ \frac { 1 }{ 3 } } }{ { x }^{ 4 } } dx } \quad =\int _{ \frac { 1 }{ 3 } }^{ 1 }{ \frac { { x }^{ \frac { 1 }{ 3 } }(1-{ x }^{ 2 })^{ \frac { 1 }{ 3 } } }{ { x }^{ 4 } } dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 9

Question 10.
If\quad f(x)=\int _{ 0 }^{ x }{ tsint,\quad then\quad { f }^{ \prime }(x)\quad is }
(a) cosx+xsinx
(b) xsinx
(c) xcosx
(d) sinx+xcosx
Solution:
(b) f(x)=\int _{ 0 }^{ x }{ tsint\quad dt }
=t(-cost)-\int { 1{ \left[ (-cost)dt \right] }_{ 0 }^{ x } }
=-x cox+sinx

Exercise 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

Question 1.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { cos }^{ 2 }x\quad dx } =I
Solution:
I=\frac { 1 }{ 2 } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ (1+cos2x)dx } =\frac { 1 }{ 2 } { \left[ x+\frac { sin2x }{ 2 } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }\quad =\frac { \pi }{ 4 }

Question 2.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sqrt { sinx } }{ \sqrt { sinx } +\sqrt { cosx } } dx }
Solution:
let I = \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sqrt { sinx } }{ \sqrt { sinx } +\sqrt { cosx } } dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 2

Question 3.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { sin }^{ \frac { 3 }{ 2 } }xdx }{ { sin }^{ \frac { 3 }{ 2 } }x+{ cos }^{ \frac { 3 }{ 2 } }dx } dx }
Solution:
let I = \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { sin }^{ \frac { 3 }{ 2 } }xdx }{ { sin }^{ \frac { 3 }{ 2 } }x+{ cos }^{ \frac { 3 }{ 2 } }dx } dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 3

Question 4.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { cos }^{ 5 }xdx }{ { sin }^{ 5 }x+{ cos }^{ 5 }x } }
Solution:
let I = \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { cos }^{ 5 }xdx }{ { sin }^{ 5 }x+{ cos }^{ 5 }x } }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 4

Question 5.
\int _{ -5 }^{ 5 }{ \left| x+2 \right| dx=I }
Solution:
I=\int _{ -5 }^{ 5 }{ \left| x+2 \right| dx+\int _{ -2 }^{ 5 }{ \left| x+2 \right| dx } }
at x = – 5, x + 2 < 0; at x = – 2, x + 2 = 0; at x = 5, x + 2>0;x + 2<0, x + 2 = 0, x + 2>0
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 5

Question 6.
\int _{ 2 }^{ 8 }{ |x-5|dx } =I
Solution:
\int _{ 2 }^{ 8 }{ |x-5|dx } =I
vedantu class 12 maths Chapter 7 Integrals 6

Question 7.
\int _{ 0 }^{ 1 }{ x(1-x)^{ n }dx } =I
Solution:
\int _{ 0 }^{ 1 }{ x(1-x)^{ n }dx } =I
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 7

Question 8.
\int _{ 0 }^{ \frac { \pi }{ 4 } }{ log(1+tanx)dx }
Solution:
let I = \int _{ 0 }^{ \frac { \pi }{ 4 } }{ log(1+tanx)dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 8

Question 9.
\int _{ 0 }^{ 2 }{ x\sqrt { 2-x } dx=I }
Solution:
let 2-x = t
⇒ – dx = dt
when x = 0, t = 2 and when x = 2,t = 0
\frac { 1 }{ 2 }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 9.

Question 10.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 2logsinx-logsin2x \right) dx=I }
Solution:
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 2logsinx-logsin2x \right) dx=I }
vedantu class 12 maths Chapter 7 Integrals 10

Question 11.
\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2 } } xdx
Solution:
Let f(x) = sin² x
f(-x) = sin² x = f(x)
∴ f(x) is an even function
\therefore \int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2 } } xdx\quad =2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left[ \frac { 1-cos2x }{ 2 } \right] dx }
={ \left[ x-\frac { sin2x }{ x } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }\therefore I=\frac { \pi }{ 2 }

Question 12.
\int _{ 0 }^{ \pi }{ \frac { xdx }{ 1+sinx } }
Solution:
let I = \int _{ 0 }^{ \pi }{ \frac { xdx }{ 1+sinx } } …(i)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 12

Question 13.
\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 7 } } xdx
Solution:
Let f(x) = sin7 xdx
⇒ f(-x) = -sin7 x = -f(x)
⇒ f(x) is an odd function of x
⇒ \int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 7 } } xdx=0

Question 14.
\int _{ 0 }^{ 2\pi }{ { cos }^{ 5 } } xdx
Solution:
let f(x) = cos5 x
⇒ f(2π – x) = cos5 x
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 14
vedantu class 12 maths Chapter 7 Integrals 14.1

Question 15.
\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { sinx-cosx }{ 1+sinx\quad cosx } dx }
Solution:
let I = \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { sinx-cosx }{ 1+sinx\quad cosx } dx } …(i)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 15

Question 16.
\int _{ 0 }^{ \pi }{ log(1+cosx)dx }
Solution:
let I = \int _{ 0 }^{ \pi }{ log(1+cosx)dx }
then I = \int _{ 0 }^{ \pi }{ log[1+cos(\pi -x)]dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 16
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 16.1

Question 17.
\int _{ 0 }^{ a }{ \frac { \sqrt { x } }{ \sqrt { x } +\sqrt { a-x } } dx }
Solution:
let I = \int _{ 0 }^{ a }{ \frac { \sqrt { x } }{ \sqrt { x } +\sqrt { a-x } } dx } …(i)
vedantu class 12 maths Chapter 7 Integrals 17

Question 18.
\int _{ 0 }^{ 4 }{ \left| x-1 \right| dx=I }
Solution:
I=-\int _{ 0 }^{ 1 }{ (x-1)dx } +\int _{ 1 }^{ 4 }{ (x-1)dx }
=-{ \left[ \frac { { x }^{ 2 } }{ 2 } -x \right] }_{ 0 }^{ 1 }+{ \left[ \frac { { x }^{ 2 } }{ 2 } -x \right] }_{ 1 }^{ 4 }=5

Question 19.
show that 4\int _{ 0 }^{ a }{ f(x)g(x)dx } =2\int _{ 0 }^{ a }{ f(x)dx } if f and g are defined as f(x)=f(a-x) and g(x)+g(a-x)=4
Solution:
let I = \int _{ 0 }^{ a }{ f(x)g(x)dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 19

Question 20.
The value of \int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ \left( { x }^{ 3 }+xcosx+{ tan }^{ 5 }x+1 \right) dx } is
(a) 0
(b) 2
(c) π
(d) 1
Solution:
(c) let I = \int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ \left( { x }^{ 3 }+xcosx+{ tan }^{ 5 }x+1 \right) dx } is
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 20

Question 21.
The value of \int _{ 0 }^{ \frac { \pi }{ 2 } }{ log\left[ \frac { 4+3sinx }{ 4+3sinx } \right] dx } is
(a) 2
(b) \frac { 3 }{ 4 }
(c) 0
(d) -2
Solution:
let I = \int _{ 0 }^{ \frac { \pi }{ 2 } }{ log\left[ \frac { 4+3sinx }{ 4+3sinx } \right] dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 21
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 21.1


Comments

Popular posts from this blog

Grammar Exercise - Tag Questions

She is collecting stickers, isn't she? We often watch TV in the afternoon, don't we? You have cleaned your bike, haven't you? John and Max don't like maths, do they? Peter played handball yesterday, didn't he? They are going home from school, aren't they? Mary didn't do her homework last Monday, did she? He could have bought a new car, couldn't he? Kevin will come tonight, won't he? I'm clever, aren't I? Choose the correct word. They're working on the project, aren't they? It wasn't my fault was it? Bill got what he wanted, didn't he? It won't be hard to convince her, will it? We can't leave him alone, can we? We've done our job, haven't we? You should apologize for what you have done, shouldn't you? They didn't start at two o'clock, did they? They finish work at five o'clock, don't they ? She doesn't like him, does she ? Difficult Question Tags Exercises

VERB AND FORMS OF VERB WITH HINDI MEANING_List of Verb in hindi

Verbs What is a verb? Verbs are the action words in a sentence that describe what the subject is doing. Along with nouns, verbs are the main part of a sentence or phrase, telling a story about what is taking place.     Verbs are words that express action or state of being. There are three types of verbs:  action verbs, linking verbs, and helping verbs .  Action verbs are words that express action (give, eat, walk, etc.) or possession (have, own, etc.). Action verbs can be either transitive or intransitive. List of Verb in hindi Present Hindi Meaning   Past Past Participle Buy खरीदना Bought Bought Build बांधना Built Built burn जलना Burnt Burnt Bend झुकना Bent Bent Bring लाना brought brought Become होना Became Become Come आना Came Come Catch पकड़ना Caught Caught Do करना Did Done Dream ख्वाब देखना Dreamt Dreamt Arise उठना / जागना Arose Arisen Be होना Was, were Been Bear सहन करना Bore Bore Beat मारना Beat Beat Bite काटना Bit Bitten Break तोडना Broke Broken Choose चुनना Chose Chosen Draw चि

Synonym-Antonym list with Hindi Meaning

S.No Word शब्द Synonym Antonym 1 Abate रोक-थाम करना moderate, decrease aggravate, supplement 2 Abject अधम despicable, servile, commendable, praiseworthy 3 Abjure त्यागना forsake, renounce, approve, sanction 4 Abortive निष्फल vain, unproductive, effectual productive 5 Absolve दोषमुक्त करना pardon, forgive , compel, accuse 6 Accord सहमति agreement, harmony , disagreement, discord 7 Acrimony रूखापन harshness, bitterness, courtesy, benevolence 8 Adamant अटल stubborn, inflexible , flexible, soft 9 Adherent पक्षपाती follower, disciple , rival, adversary 10 Adjunct सहायक joined, added , separated, subtracted 11 Admonish धिक्कारना counsel, reprove , approve, applaud 12 Adversity विपत्ति misfortune, calamity , prosperity, fortune 13 Alien विदेशी foreigner, outsider , native, resident 14 Allay निराकरणकरना pacify, soothe , aggravate, excite 15 Alleviate कम करना abate, relieve , aggrava