Skip to main content

Class 12 Maths Chapter 7 Integrals(INDEFINITE INTEGRALS) EXERCISE 7.1 TO EXERCISE 7.7

Exercise 7.1

Find an antiderivative (or integral) of the following by the method of inspection:

Question 1.
sin 2x
Solution:
\int { sin2x\quad dx=-\frac { cos2x }{ 2 } +C }

Question 2.
cos 3x
Solution:
\int { cos3x\quad dx=\frac { sin3x }{ 3 } +C }

Question 3.
{ e }^{ 2x }
Solution:
\int { { e }^{ 2x }dx=\frac { { e }^{ 2x } }{ 2 } +C }

Question 4.
(ax + c)²
Solution:
\int { { (ax+b) }^{ 2 }dx=\frac { { (ax+b) }^{ 3 } }{ 3a } } +C

Question 5.
{ sin\quad 2x-4e }^{ 3x }
Solution:
\int { \left( { sin2x-4e }^{ 3x } \right) dx=-\frac { cos2x }{ 2 } -\frac { { 4e }^{ 3x } }{ 3 } +C }

Find the following integrals in Exercises 6 to 20 :

Question 6.
\int { \left( { 4e }^{ 3x }+1 \right) dx }
Solution:
=\int { { 4e }^{ 3x }dx+\int { dx=\frac { 4 }{ 3 } { e }^{ 3x }+x+c } }

Question 7.
\int { { x }^{ 2 }\left( 1-\frac { 1 }{ { x }^{ 2 } } \right) dx }
Solution:
=\int { { x }^{ 2 }\left( 1-\frac { 1 }{ { x }^{ 2 } } \right) dx } =\frac { { x }^{ 3 } }{ 3 } -x+C

Question 8.
\int { { (ax }^{ 2 }+bx+c)dx }
Solution:
=\frac { { ax }^{ 3 } }{ 3 } +\frac { { bx }^{ 2 } }{ 2 } +cx+d

Question 9.
\int { \left( { 2x }^{ 2 }+{ e }^{ x } \right) dx }
Solution:
=\frac { { 2x }^{ 3 } }{ 3 } +{ e }^{ x }+c

Question 10.
\int { { \left[ \sqrt { x } -\frac { 1 }{ \sqrt { x } } \right] }^{ 2 }dx }
Solution:
=\frac { { x }^{ 2 } }{ 2 } +logx-2x+C

Question 11.
\int { \frac { { x }^{ 3 }+{ 5x }^{ 2 }-4 }{ { x }^{ 2 } } dx }
Solution:
\int { \left( \frac { { x }^{ 3 } }{ { x }^{ 2 } } +\frac { { 5x }^{ 2 } }{ { x }^{ 2 } } -\frac { 4 }{ { x }^{ 2 } } \right) }
=\int { xdx+5\int { 1dx-4 } \int { { x }^{ 2 }dx } }
=\frac { { x }^{ 2 } }{ 2 } +5x+\frac { 4 }{ x } +c

Question 12.
\int { \frac { { x }^{ 3 }+3x+4 }{ \sqrt { x } } dx }
Solution:
=\int { \left( { x }^{ \frac { 5 }{ 2 } }+{ 3x }^{ \frac { 1 }{ 2 } }+4{ x }^{ -\frac { 1 }{ 2 } } \right) } dx
=\frac { 2 }{ 7 } { x }^{ \frac { 7 }{ 2 } }+{ 2x }^{ \frac { 3 }{ 2 } }+8\sqrt { x } +c

Question 13.
\int { \frac { { x }^{ 3 }-{ x }^{ 2 }+x-1 }{ x-1 } dx }
Solution:
=\int { \frac { { x }^{ 2 }(x-1)+(x-1) }{ x-1 } dx }
=\int { \left( { x }^{ 2 }+1 \right) dx } =\frac { { x }^{ 3 } }{ 3 } +x+c

Question 14.
\int { \left( 1-x \right) \sqrt { x } dx }
Solution:
=\int { { x }^{ \frac { 1 }{ 2 } }-{ x }^{ \frac { 3 }{ 2 } }dx\quad =\quad \frac { 2 }{ 3 } { x }^{ \frac { 3 }{ 2 } }-\frac { 2 }{ 5 } { x }^{ \frac { 5 }{ 2 } } }

Question 15.
\int { \sqrt { x } \left( { 3x }^{ 2 }+2x+3 \right) dx }
Solution:
=\int { \left( { 3x }^{ \frac { 5 }{ 2 } }+{ 2 }^{ \frac { 3 }{ 2 } }+{ 3x }^{ \frac { 1 }{ 2 } } \right) dx }
=\frac { 6 }{ 7 } { x }^{ \frac { 7 }{ 2 } }+\frac { 4 }{ 5 } { x }^{ \frac { 5 }{ 2 } }+\frac { 6 }{ 3 } { x }^{ \frac { 3 }{ 2 } }+c

Question 16.
\int { (2x-3cosx+{ e }^{ x })dx }
Solution:
=\frac { { 2x }^{ 2 } }{ 2 } -3sinx+{ e }^{ x }+c
={ x }^{ 2 }-3sinx+{ e }^{ x }+c

Question 17.
\int { \left( { 2x }^{ 2 }-3sinx+5\sqrt { x } \right) dx }
Solution:
=\frac { { 2x }^{ 3 } }{ 3 } +3cosx+5\frac { { x }^{ \frac { 3 }{ 2 } } }{ \frac { 3 }{ 2 } } +c
=\frac { 2 }{ 3 } { x }^{ 3 }+3cosx+\frac { 10 }{ 3 } { x }^{ \frac { 3 }{ 2 } }+c

Question 18.
\int { secx(secx+tanx)dx }
Solution:
=\int { { (sec }^{ 2 }x+secxtanx)dx }
= tanx + secx + c

Question 19.
\int { \frac { { sec }^{ 2 }x }{ { cosec }^{ 2 }x } dx }
Solution:
=\int { \frac { 1 }{ { cos }^{ 2 }x } } { sin }^{ 2 }xdx
=\int { tan } ^{ 2 }xdx\quad =\int { { (sec }^{ 2 }x-1)dx\quad =tanx-x+c }

Question 20.
\int { \frac { 2-3sinx }{ { cos }^{ 2 }x } dx }
Solution:
=\int { \left( \frac { 2 }{ { cos }^{ 2 }x } -3\frac { sinx }{ { cos }^{ 2 }x } \right) dx }
=\int { ({ 2sec }^{ 2 }x-3secxtanx)dx }
= 2tanx – 3secx + c

Choose the correct answer in Exercises 21 and 22.

Question 21.
The antiderivative \left( \sqrt { x } +\frac { 1 }{ \sqrt { x } } \right) equals
(a) \frac { 1 }{ 3 } { x }^{ \frac { 1 }{ 3 } }+{ 2x }^{ \frac { 1 }{ 2 } }+c
(b) \frac { 2 }{ 3 } { x }^{ \frac { 2 }{ 3 } }+{ \frac { 1 }{ 2 } x }^{ 2 }+c
(c) \frac { 2 }{ 3 } { x }^{ \frac { 3 }{ 2 } }+{ 2x }^{ \frac { 1 }{ 2 } }+c
(d) \frac { 3 }{ 2 } { x }^{ \frac { 3 }{ 2 } }+\frac { 1 }{ 2 } { x }^{ \frac { 1 }{ 2 } }+c
Solution:
(c) \int { \left( \sqrt { x } +\frac { 1 }{ \sqrt { x } } \right) dx }
=\int { \left( { x }^{ \frac { 1 }{ 2 } }+{ x }^{ \frac { 1 }{ 2 } } \right) dx }
=\frac { 2 }{ 3 } { x }^{ \frac { 3 }{ 2 } }+{ 2x }^{ \frac { 1 }{ 2 } }+c

Question 22.
If \frac { d }{ dx } f(x)={ 4x }^{ 3 }-\frac { 3 }{ { x }^{ 4 } } such that f(2)=0 then f(x) is
(a) { x }^{ 4 }+\frac { 1 }{ { x }^{ 3 } } -\frac { 129 }{ 8 }
(b) { x }^{ 3 }+\frac { 1 }{ { x }^{ 4 } } +\frac { 129 }{ 8 }
(c) { x }^{ 4 }+\frac { 1 }{ { x }^{ 3 } } +\frac { 129 }{ 8 }
(d) { x }^{ 3 }+\frac { 1 }{ { x }^{ 4 } } -\frac { 129 }{ 8 }
Solution:
(a) f(x)=\int { \left( { 4x }^{ 3 }-\frac { 3 }{ { x }^{ 4 } } \right) dx }
={ x }^{ 4 }+\frac { 1 }{ { x }^{ 3 } } +c
\therefore f(2)={ (2) }^{ 4 }+\frac { 1 }{ { (2) }^{ 3 } } +c=0=-\frac { 129 }{ 8 }

Exercise 7.2

Integrate the functions in Exercises 1 to 37:

Question 1.
\frac { 2x }{ 1+{ x }^{ 2 } }
Solution:
Let 1+x² = t
⇒ 2xdx = dt
\therefore \int { \frac { 2x }{ 1+{ x }^{ 2 } } dx\quad = } \int { \frac { dt }{ t } \quad =logt+C\quad =log(1+{ x }^{ 2 })+C }

Question 2.
\frac { { \left( logx \right) }^{ 2 } }{ x }
Solution:
Let logx = t
⇒ \frac { 1 }{ x }dx=dt
\therefore \int { \frac { { (logx) }^{ 2 } }{ x } dx } \quad =\int { { t }^{ 2 }dt } \quad =\frac { { t }^{ 3 } }{ 3 } +c\quad =\frac { 1 }{ 3 } { (logx) }^{ 3 }+c

Question 3.
\frac { 1 }{ x+xlogx }
Solution:
Put 1+logx = t
∴ \frac { 1 }{ x }dx=dt
\int { \frac { 1 }{ x(1+logx) } dx } =\int { \frac { 1 }{ t } dt } =log|t|+c
= log|1+logx|+c

Question 4.
sinx sin(cosx)
Solution:
Put cosx = t, -sinx dx = dt
\int { sinx\quad sin(cosx)dx } =-\int { sin(cosx) } (-sinx)dx
=-\int { sint\quad dt } \quad =cost+c\quad =cos(cosx)+c

Question 5.
sin(ax+b) cos(ax+b)
Solution:
let sin(ax+b) = t
⇒ cos(ax+b)dx = dt
\therefore \int { sin(ax+b)cos(ax+b)dx } =\frac { 1 }{ a } \int { t\quad dt }
=\frac { 1 }{ a } .\frac { { t }^{ 2 } }{ 2 } +c\quad =\frac { 1 }{ 2a } { sin }^{ 2 }(ax+b)+C

Question 6.
\sqrt { ax+b }
Solution:
\int { \sqrt { ax+b } dx } \quad =\frac { 2 }{ 3a } { (ax+b) }^{ \frac { 3 }{ 2 } }+C

Question 7.
x\sqrt { x+2 }
Solution:
Let x+2 = t²
⇒ dx = 2t dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 7

Question 8.
x\sqrt { 1+{ 2x }^{ 2 } }
Solution:
let 1+2x² = t²
⇒ 4x dx = 2t dt
x\quad dx=\frac { t }{ 2 } dt\int { x\sqrt { 1+{ 2x }^{ 2 } } dx }
=\frac { 1 }{ 2 } \int { { t }^{ 2 }dt } =\frac { { t }^{ 3 } }{ 6 } +c=\frac { 1 }{ 6 } { ({ 1+2x }^{ 2 }) }^{ \frac { 3 }{ 2 } }+c

Question 9.
(4x+2)\sqrt { { x }^{ 2 }+x+1 }
Solution:
let x²+x+1 = t
⇒(2x+1)dx = dt
\therefore \int { (4x+1)\sqrt { { x }^{ 2 }+x+1 } dx } =2\int { \sqrt { t } dt }
=\frac { { 2t }^{ \frac { 3 }{ 2 } } }{ ^{ \frac { 3 }{ 2 } } } +c\quad =\frac { 4 }{ 3 } { t }^{ \frac { 3 }{ 2 } }+c\quad =\frac { 4 }{ 3 } { ({ x }^{ 2 }+x+1) }^{ \frac { 3 }{ 2 } }+c

Question 10.
\frac { 1 }{ x-\sqrt { x } }
Solution:
\int { \frac { 1 }{ x-\sqrt { x } } dx } =\int { \frac { 1 }{ \sqrt { x } (\sqrt { x-1 } ) } dx } =I
Let √x-1 = t
\frac { 1 }{ 2 } { x }^{ -\frac { 1 }{ 2 } }dx=dt
I=2\int { \frac { dt }{ t } }
= 2logt + c
= 2log(√x-1)+c

Question 11.
\frac { x }{ \sqrt { x+4 } } ,x>0
Solution:
let x+4 = t
⇒ dx = dt, x = t-4
byjus class 12 maths Chapter 7 Integrals 11

Question 12.
{ { (x }^{ 3 }-1) }^{ \frac { 1 }{ 3 } }.{ x }^{ 5 }
Solution:
\int { { { (x }^{ 3 }-1) }^{ \frac { 1 }{ 3 } }.{ x }^{ 5 }.dx } \quad =\frac { 1 }{ 7 } { { (x }^{ 3 }-1) }^{ \frac { 7 }{ 3 } }+\frac { 1 }{ 4 } { { (x }^{ 3 }-1) }^{ \frac { 4 }{ 3 } }+c

Question 13.
\frac { { x }^{ 2 } }{ { { (2+3x }^{ 3 }) }^{ 3 } }
Solution:
Let 2+3x³ = t
⇒ 9x² dx = dt
\therefore \int { \frac { { x }^{ 2 } }{ { { (2+3x }^{ 3 }) }^{ 3 } } dx } =\frac { 1 }{ 9 } \int { \frac { dt }{ { t }^{ 3 } } =\frac { 1 }{ 9 } \int { { t }^{ -3 }dt } }
=-\frac { 1 }{ { 18t }^{ 2 } } +c\quad =-\frac { 1 }{ 18(2+{ 3x }^{ 3 })^{ 2 } } +c

Question 14.
\frac { 1 }{ x(logx)^{ m } } ,x>0
Solution:
Put log x = t, so that \frac { 1 }{ x }dx=dt
\therefore \int { \frac { 1 }{ { x(logx) }^{ m } } dx } =\int { \frac { dt }{ { t }^{ m } } =\frac { { t }^{ -m+1 } }{ -m+1 } +c }
=\frac { { (logx) }^{ 1-m } }{ 1-m } +c

Question 15.
\frac { x }{ 9-4{ x }^{ 2 } }
Solution:
put 9-4x² = t, so that -8x dx = dt
\therefore \int { \frac { x }{ 9-{ 4x }^{ 2 } } dx } =-\frac { 1 }{ 8 } \int { \frac { dt }{ t } } =-\frac { 1 }{ 8 } log|t|+c
=\frac { 1 }{ 8 } log\frac { 1 }{ |9-{ 4x }^{ 2 }| } +c

Question 16.
{ e }^{ 2x+3 }
Solution:
put 2x+3 = t
so that 2dx = dt
\int { { e }^{ 2x+3 } } dx\quad =\frac { 1 }{ 2 } \int { { e }^{ t }dt } \quad =\frac { 1 }{ 2 } { e }^{ t }+c\quad =\frac { 1 }{ 2 } { e }^{ 2x+3 }+c

Question 17.
\frac { x }{ { e }^{ { x }^{ 2 } } }
Solution:
Let x² = t
⇒ 2xdx = dt ⇒ xdx=\frac { dt }{ 2 }
\therefore \int { \frac { x }{ { e }^{ { x }^{ 2 } } } dx } \quad =\frac { 1 }{ 2 } \int { \frac { dt }{ { e }^{ t } } \quad =\frac { 1 }{ 2 } \int { { e }^{ -t } } dt }
=-\frac { 1 }{ 2 } { e }^{ { -x }^{ 2 } }+c

Question 18.
\frac { { e }^{ { tan }^{ -1 }x } }{ 1+{ x }^{ 2 } }
Solution:
let\quad { tan }^{ -1 }x=t\Rightarrow \frac { 1 }{ 1+{ x }^{ 2 } } dx=dt
\therefore \int { \frac { { e }^{ { tan }^{ -1 }x } }{ 1+{ x }^{ 2 } } dx } \quad =\int { { e }^{ t }dt\quad ={ e }^{ { tan }^{ -1 }x }+c }

Question 19.
\frac { { e }^{ 2x }-1 }{ { e }^{ 2x }+1 }
Solution:
\int { \frac { { e }^{ 2x }-1 }{ { e }^{ 2x }+1 } dx\quad =\int { \frac { { e }^{ x }({ e }^{ x }-{ e }^{ -x }) }{ { e }^{ x }({ e }^{ x }+{ e }^{ -x }) } dx=I } }
put ex+e-x = t
so that (ex-e-x)dx = dt
\therefore I=\int { \frac { dt }{ t } =log|t|+c } =log|{ e }^{ x }+{ e }^{ -x }|+c

Question 20.
\frac { { e }^{ 2x }-{ e }^{ 2x } }{ { e }^{ 2x }+{ e }^{ -2x } }
Solution:
put e2x-e-2x = t
so that (2e2x-2e-2x)dx = dt
\therefore \int { \frac { { e }^{ 2x }-{ e }^{ 2x } }{ { e }^{ 2x }+{ e }^{ -2x } } } dx=\frac { 1 }{ 2 } \int { \frac { 1 }{ t } dt } =\frac { 1 }{ 2 } log|t|+c
=\frac { 1 }{ 2 } log+|{ e }^{ 2x }+{ e }^{ -2x }|+c

Question 21.
tan²(2x-3)
Solution:
∫tan²(2x-3)dx = ∫[sec²(2x-3)-1]dx = I
put 2x-3 = t
so that 2dx = dt
I = \frac { 1 }{ 2 } ∫sec²t dt-x+c
\frac { 1 }{ 2 }t-x+c
\frac { 1 }{ 2 }tan(2x-3)-x+c

Question 22.
sec²(7-4x)
Solution:
∫sec²(7-4x)dx
\frac { tan(7-4x) }{ -4 }+c

Question 23.
\frac { { sin }^{ -1 }x }{ \sqrt { 1-{ x }^{ 2 } } }
Solution:
let\quad { sin }^{ -1 }x=t\quad \Rightarrow \frac { 1dx }{ \sqrt { 1-{ x }^{ 2 } } } =dt
\int { \frac { { sin }^{ -1 }x }{ \sqrt { 1-{ x }^{ 2 } } } dx } =\int { t\quad dt } =\frac { 1 }{ 2 } { t }^{ 2 }+c=\frac { 1 }{ 2 } { { (sin }^{ -1 }x) }^{ 2 }+c

Question 24.
\frac { 2cosx-3sinx }{ 6cosx+4sinx }
Solution:
put 2sinx+4cosx = t
⇒ (2cosx-3sinx)dx = dt
\frac { 1 }{ 2 } \int { \frac { 2cosx-3sinx }{ 2sinx+3cosx } dx } =\frac { 1 }{ 2 } \int { \frac { dt }{ t } } =\frac { 1 }{ 2 } log|t|+c
\frac { 1 }{ 2 } log|2sinx+3cosx|+c

Question 25.
\frac { 1 }{ { cos }^{ 2 }x{ (1-tanx) }^{ 2 } }
Solution:
put 1-tanx = t
so that -sec²x dx = dt
\therefore \int { \frac { 1 }{ { cos }^{ 2 }x{ (1-tanx) }^{ 2 } } dx } =\int { \frac { { sec }^{ 2 }x }{ { (1-tanx) }^{ 2 } } dx }
=-\int { \frac { dt }{ { t }^{ 2 } } } =\frac { 1 }{ t } +c=\frac { 1 }{ (1-tanx) } +c

Question 26.
\frac { cos\sqrt { x } }{ \sqrt { x } }
Solution:
put\quad \sqrt { x } =t,so\quad that\frac { 1 }{ 2\sqrt { x } } dx=dt
\therefore \int { \frac { cos\sqrt { x } }{ \sqrt { x } } } dx\quad =\quad 2\quad =\int { cost\quad dt\quad = } 2sint+c
= 2sin√x+c

Question 27.
\sqrt { sin2x } cos2x
Solution:
put sin2x = t²
⇒ cos2x dx = t dt
\therefore \int { \sqrt { sin2x } .cos2x\quad dx } \quad =\int { t.tdt=\frac { { t }^{ 3 } }{ 3 } +c }
=\frac { { (sin2x) }^{ \frac { 3 }{ 2 } } }{ 3 } +c

Question 28.
\frac { cosx }{ \sqrt { 1+sinx } }
Solution:
put 1+sinx = t²
⇒cosx dx = 2t dt
\therefore \int { \frac { cosx }{ \sqrt { 1+sinx } } dx } =2\int { dt } =2t+c
=2\sqrt { 1+sinx } +c

Question 29.
cotx log sinx
Solution:
put log sinx = t,
⇒ cot x dx = dt
\therefore \int { cot\quad logsinx\quad dx } =\int { t } dt\quad =\frac { { t }^{ 2 } }{ 2 } +c
=\frac { 1 }{ 2 } { (log\quad sinx) }^{ 2 }+c

Question 30.
\frac { sinx }{ 1+cosx }
Solution:
put 1+cosx = t
⇒ -sinx dx = dt
\therefore \int { \frac { sinx }{ 1+cosx } dx } =\int { -\frac { dt }{ t } } =-logt+c
=-log(1+cosx)+c

Question 31.
\frac { sinx }{ { (1+cosx) }^{ 2 } }
Solution:
put 1+cosx = t
so that -sinx dx = dt
\therefore \int { \frac { sinx }{ { (1+cosx) }^{ 2 } } dx } =-\int { \frac { dt }{ { t }^{ 2 } } }
=\frac { 1 }{ t } +c=\frac { 1 }{ 1+cosx } +c

Question 32.
\frac { 1 }{ 1+cotx }
Solution:
\int { \frac { 1 }{ 1+\frac { cosx }{ sinx } } } dx=\frac { 1 }{ 2 } \int { \frac { 2sinx\quad dx }{ sinx+cosx } }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 32

Question 33.
\frac { 1 }{ 1-tanx }
Solution:
\int { \frac { 1 }{ 1-tanx } } dx=\frac { 1 }{ 2 } \int { \frac { 2cosx\quad dx }{ cosx-sinx } }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 33

Question 34.
\frac { \sqrt { tanx } }{ sinxcosx }
Solution:
\int { \frac { \sqrt { tanx } }{ sinxcosx } dx } =\int { \frac { \sqrt { tanx } }{ tanx } } .{ sec }^{ 2 }xdx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 34

Question 35.
\frac { { (1+logx) }^{ 2 } }{ x }
Solution:
let 1+logx = t
⇒ \frac { 1 }{ x }dx=dt
\int { \frac { { (1+logx) }^{ 2 } }{ x } dx } =\int { { t }^{ 2 }dt } =\frac { { t }^{ 3 } }{ 3 } +c
=\frac { 1 }{ 3 } { (1+logx) }^{ 3 }+c

Question 36.
\frac { (x+1){ (x+logx) }^{ 2 } }{ x }
Solution:
put x+logx = t
\left( \frac { x+1 }{ x } \right) dx=dt
\therefore \int { \frac { { (x+1)(x+logx) }^{ 2 } }{ x } } dx=\int { { t }^{ 2 }dt }
=\frac { { (x+logx) }^{ 3 } }{ 3 } +c

Question 37.
\frac { { x }^{ 3 }sin({ tan }^{ -1 }{ x }^{ 4 }) }{ 1+{ x }^{ 8 } } dx
Solution:
put\quad { tan }^{ -1 }{ x }^{ 4 }=t\quad so\quad that\frac { 1 }{ 1+{ x }^{ 8 } } .{ 4x }^{ 3 }dx=dt
\therefore \int { \frac { { x }^{ 3 }sin({ tan }^{ -1 }{ x }^{ 4 }) }{ 1+{ x }^{ 8 } } } dx=\frac { 1 }{ 4 } \int { sint\quad dt }
=\frac { 1 }{ 4 } (-cost)+c=-\frac { 1 }{ 4 } cos({ tan }^{ -1 }{ x }^{ 4 })+c

Choose the correct answer in exercises 38 and 39

Question 38.
\int { \frac { { 10x }^{ 9 }+{ 10 }^{ x }log{ e }^{ 10 } }{ { x }^{ 10 }+{ 10 }^{ x } } dx }
(a) 10x – x10 + C
(b) 10x + x10 + C
(c) (10x – x10) + C
(d) log (10x + x10) + C
Solution:
(d) \int { \frac { { 10x }^{ 9 }+{ 10 }^{ x }log{ e }^{ 10 } }{ { x }^{ 10 }+{ 10 }^{ x } } dx }
= log (10x + x10) + C

Question 39.
\int { \frac { dx }{ { sin }^{ 2 }x{ \quad cos }^{ 2 }x } = }
(a) tanx + cotx + c
(b) tanx – cotx + c
(c) tanx cotx + c
(d) tanx – cot2x + c
Solution:
(c) \int { \frac { dx }{ { sin }^{ 2 }x{ \quad cos }^{ 2 }x } = }
=\int { \left( { sec }^{ 2 }x+{ cosec }^{ 2 }x \right) dx }
= tanx – cotx + c

We hope the NCERT Solutions for Class 12 Maths

Exercise 7.3

Find the integrals of the functions in Exercises 1 to 22.

Question 1.
sin²(2x+5)
Solution:
∫sin²(2x+5)dx
\frac { 1 }{ 2 }∫[1-cos2(2x+5)]dx
\frac { 1 }{ 2 }∫[1-cos(4x+10)]dx
\frac { 1 }{ 2 } \left[ x-\frac { sin(4x+10) }{ 4 } \right] +c

Question 2.
sin3x cos4x
Solution:
∫sin3x cos4x
\frac { 1 }{ 2 }∫[sin(3x+4x)+cos(3x-4x)]dx
\frac { 1 }{ 2 }∫[sin7x+sin(-x)]dx
-\frac { 1 }{ 14 } cos7x+\frac { 1 }{ 2 } cosx+c

Question 3.
∫cos2x cos4x cos6x dx
Solution:
\frac { 1 }{ 2 } ∫cos2x cos4x cos6x dx
\frac { 1 }{ 2 } ∫(cos6x+cos2x) cos6x dx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 3

Question 4.
∫sin3(2x+1)dx
Solution:
\frac { 1 }{ 4 } ∫[3sin(2x+1)-sin3(2x+1)]dx
-\frac { 3 }{ 8 } cos(2x+1)+\frac { 1 }{ 24 } [4{ cos }^{ 3 }(2x+1)-3cos(2x+1)]+c
-\frac { 1 }{ 2 } cos(2x+1)+\frac { 1 }{ 6 } { cos }^{ 3 }(2x+1)+c

Question 5.
sin3x cos3x
Solution:
put sin x = t
⇒ cos x dx = dt
\therefore \int { { sin }^{ 3 }x{ cos }^{ 3 }xdx } =\int { { t }^{ 3 }(1-{ t }^{ 2 })dt }
\frac { { t }^{ 4 } }{ 4 } -\frac { { t }^{ 6 } }{ 6 } +c=\frac { { (sinx) }^{ 4 } }{ 4 } -\frac { { (sinx) }^{ 6 } }{ 6 } +c

Question 6.
sinx sin2x sin3x
Solution:
∫sinx sin2x sin3x dx
\frac { 1 }{ 2 } ∫ 2sin x sin 2x sin 3x dx
\frac { 1 }{ 2 } ∫ (cosx – cos3x)sin 3x dx
\frac { 1 }{ 2 } ∫ (sin 4x + sin 2x – sin 6x)dx
\frac { 1 }{ 4 } \left\{ \frac { -cos4x }{ 4 } -\frac { cos2x }{ 2 } +\frac { cos6x }{ 6 } \right\} +c

Question 7.
sin 4x sin 8x
Solution:
\frac { 1 }{ 2 }∫sin 4x sin 8xdx
\frac { 1 }{ 2 }∫(cos 4x – cos 12x)dx
\frac { 1 }{ 2 } \left[ \frac { sin4x }{ 4 } -\frac { sin12x }{ 12 } \right] +c

Question 8.
\frac { 1-cosx }{ 1+cosx }
Solution:
\int { \frac { 1-cosx }{ 1+cosx } dx }
\int { \frac { { 2sin }^{ 2 }\frac { x }{ 2 } }{ { 2cos }^{ 2 }\frac { x }{ 2 } } dx } =\int { { tan }^{ 2 }\frac { x }{ 2 } dx }
=\int { \left[ { sec }^{ 2 }\frac { x }{ 2 } -1 \right] } dx\quad =2tan\frac { x }{ 2 } -x+c

Question 9.
\frac { cosx }{ 1+cosx }
Solution:
\int { \frac { cosx }{ 1+cosx } dx }
=\int { 1 } dx-\int { \frac { 1 }{ 1+cosx } dx }
=x-\frac { 1 }{ 2 } \int { { sec }^{ 2 }\frac { x }{ 2 } dx+c\quad =x-tan\frac { x }{ 2 } +c }

Question 10.
∫sinx4 dx
Solution:
\int { { (\frac { 1-cos2x }{ 2 } ) }^{ 2 }dx } \quad =\frac { 1 }{ 4 } \int { \left( { 1+cos }^{ 2 }2x-2cos2x \right) dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 10

Question 11.
cos4 2x
Solution:
∫ cos4 2x dx
\int { { \left( \frac { 1+cos4x }{ 2 } \right) }^{ 2 } } dx
tiwari academy class 12 maths Chapter 7 Integrals 11

Question 12.
\frac { { sin }^{ 2 }x }{ 1+cosx }
Solution:
\int { \frac { { sin }^{ 2 }x }{ 1+cosx } } dx\quad =\int { \frac { 1-{ cos }^{ 2 }x }{ 1+cosx } } dx
\int { (1-cosx) } dx\quad =x-sinx+c

Question 13.
\frac { cos2x-cos2\alpha }{ cosx-cos\alpha }
Solution:
let I = \int { \frac { \left( { 2cos }^{ 2 }x-1 \right) -\left( { 2cos }^{ 2 }\alpha -1 \right) }{ cosx-cos\alpha } } dx
\int { \frac { 2\left( { cos }x-cos\alpha \right) -\left( { cos }x+cos\alpha \right) }{ cosx-cos\alpha } } dx
= 2∫cos x dx + 2cos α∫dx
= 2(sinx+xcosα)+c

Question 14.
\frac { cosx-sinx }{ 1+sin2x }
Solution:
let I = \int { \frac { cosx-sinx }{ 1+sin2x } } dx=\int { \frac { cosx-sinx }{ { (cosx+sinx) }^{ 2 } } dx }
put cosx+sinx = t
⇒ (-sinx+cosx)dx = dt
I=\int { \frac { dt }{ { t }^{ 2 } } } =-\frac { 1 }{ t } +c\quad =\frac { -1 }{ cosx+sinx } +c

Question 15.
\int { { tan }^{ 3 }2x\quad sec2x\quad dx=I }
Solution:
I = ∫(sec22x-1)sec2x tan 2xdx
put sec2x=t,2 sec2x tan2x dx=dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 15

Question 16.
tan4x
Solution:
let I = ∫tan4 dx
= ∫(sec²x-1)²dx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 16

Question 17.
\frac { { sin }^{ 3 }x+{ cos }^{ 3 }x }{ { sin }^{ 2 }x{ cos }^{ 2 }x }
Solution:
\int { \left( \frac { { sin }^{ 3 }x }{ { sin }^{ 2 }x{ cos }^{ 2 }x } +\frac { { cos }^{ 2 }x }{ sinx{ cos }^{ 2 }x } \right) dx }
= secx-cosecx+c

Question 18.
\frac { cos2x+{ 2sin }^{ 2 }x }{ { cos }^{ 2 }x }
Solution:
I=\int { \frac { \left( { cos }^{ 2 }x-{ sin }^{ 2 }x \right) +2{ sin }^{ 2 }x }{ { cos }^{ 2 }x } } dx
=\int { \frac { \left( { cos }^{ 2 }x-{ sin }^{ 2 }x \right) }{ { cos }^{ 2 }x } } dx\quad =\int { { sec }^{ 2 }xdx\quad =tanx+c }

Question 19.
\frac { 1 }{ sinx{ cos }^{ 3 }x }
Solution:
I=\int { \left( tanx+\frac { 1 }{ tanx } \right) } { sec }^{ 2 }xdx
put tanx = t
so that sec²x dx = dt
I=\int { \left( t+\frac { 1 }{ t } \right) } dt\quad =\frac { { t }^{ 2 } }{ 2 } +log|t|+c
=log|tanx|+\frac { 1 }{ 2 } { tan }^{ 2 }x+c

Question 20.
\frac { cos2x }{ { (cosx+sinx) }^{ 2 } }
Solution:
I=\int { \frac { { cos }^{ 2 }x-{ sin }^{ 2 }x }{ (cosx+sinx)^{ 2 } } dx } =\int { \frac { cosx-sinx }{ cosx+sinx } dx }
put cosx+sinx=t
⇒(-sinx+cox)dx = dt
I=\int { \frac { dt }{ t } } =log|t|+c\quad =log|cosx+sinx|+c

Question 21.
sin-1 (cos x)
Solution:
\int { { sin }^{ -1 }(cosx)dx } \quad ={ sin }^{ -1 }\left[ sin\left( \frac { \pi }{ 2 } -x \right) \right] dx
\int { \left( \frac { \pi }{ 2 } -x \right) dx } \quad =\frac { \pi x }{ 2 } -\frac { { x }^{ 2 } }{ 2 } +c

Question 22.
\int { \frac { 1 }{ cos(x-a)cos(x-b) } dx }
Solution:
\frac { 1 }{ sin(a-b) } \int { \frac { sin[(x-b)-(x-a)] }{ cos(x-a)cos(x-b) } dx }
=\frac { 1 }{ sin(a-b) } \left[ \int { tan(x-b)dx-\int { tan(x-a)dx } } \right]
=\frac { 1 }{ sin(a-b) } log\left| \frac { cos(x-a) }{ cos(x-b) } \right| +c

Question 23.
\int { \frac { { sin }^{ 2 }x-{ cos }^{ 2 }x }{ { sin }^{ 2 }x{ cos }^{ 2 }x } } dx\quad is\quad equal\quad to
(a) tanx+cotx+c
(b) tanx+cosecx+c
(c) -tanx+cotx+c
(d) tanx+secx+c
Solution:
(a) \int { \frac { { sin }^{ 2 }x-{ cos }^{ 2 }x }{ { sin }^{ 2 }x{ cos }^{ 2 }x } } dx
= ∫(sec²x-cosec²x)dx
= tanx+cotx+c

Question 24.
\int { \frac { e^{ x }(1+x) }{ cos^{ 2 }({ e }^{ x }.{ x }) } } dx\quad is\quad equal\quad to
(a) -cot(e.xx)+c
(b) tan(xex)+c
(c) tan(ex)+c
(d) cot ex+c
Solution:
(b) \int { \frac { e^{ x }(1+x) }{ cos^{ 2 }({ e }^{ x }.{ x }) } } dx
= ∫sec²t dt
= tan t+c = tan(xex)+c

Exercise 7.4

Integrate the functions in exercises 1 to 23

Question 1.
\frac { { 3x }^{ 2 } }{ { x }^{ 6 }+1 }
Solution:
Let x3 = t ⇒ 3x²dx = dt
\int { \frac { { 3x }^{ 2 } }{ { x }^{ 6 }+1 } dx } =\int { \frac { dt }{ { t }^{ 2 }+1 } } ={ tan }^{ -1 }t+c
= tan-1 (x3)+c

Question 2.
\frac { 1 }{ \sqrt { 1+{ 4x }^{ 2 } } }
Solution:
\frac { 1 }{ 2 } \int { \frac { dx }{ \sqrt { \frac { 1 }{ 4 } +{ x }^{ 2 } } } } =\frac { 1 }{ 2 } \int { \frac { dx }{ \sqrt { { \left( \frac { 1 }{ 2 } \right) }^{ 2 }+{ x }^{ 2 } } } }
=\frac { 1 }{ 2 } log\left| 2x+\sqrt { 1+{ 4x }^{ 2 } } \right| +c

Question 3.
\frac { 1 }{ \sqrt { { (2-x) }^{ 2 }+1 } }
Solution:
put (2-x)=t
so that -dx=dt
⇒ dx=-dt
\int { \frac { dx }{ \sqrt { { (2-x) }^{ 2 }+1 } } } =-\int { \frac { dt }{ \sqrt { { t }^{ 2 }+1 } } } =-log|t+\sqrt { { t }^{ 2 }+1 } |+c
=log\left| \frac { 1 }{ (2-x)+\sqrt { { x }^{ 2 }-4x+5 } } \right| +c

Question 4.
\frac { 1 }{ \sqrt { 9-{ 25x }^{ 2 } } }
Solution:
\int { \frac { dx }{ \sqrt { 9-{ 25x }^{ 2 } } } } =\frac { 1 }{ 5 } \int { \frac { dx }{ \sqrt { { \left( \frac { 3 }{ 5 } \right) }^{ 2 }-{ x }^{ 2 } } } }
=\frac { 1 }{ 5 } { sin }^{ -1 }\left( \frac { x }{ \frac { 3 }{ 5 } } \right) +c\quad =\frac { 1 }{ 5 } { sin }^{ -1 }\left( \frac { 5x }{ 3 } \right) +c

Question 5.
\frac { 3x }{ 1+{ 2x }^{ 4 } }
Solution:
Put x²=t,so that 2x dx=dt
⇒x dx = \frac { dt }{ 2 }
\therefore \int { \frac { 3x }{ 1+{ 2x }^{ 4 } } dx } =\frac { 1 }{ 2 } \int { \frac { dt }{ 1+{ 2t }^{ 2 } } } =\frac { 3 }{ 4 } \int { \frac { dt }{ { \left( \frac { 1 }{ \sqrt { 2 } } \right) }^{ 2 }+{ t }^{ 2 } } }
=\frac { 3 }{ 2\sqrt { 2 } } { tan }^{ -1 }(\sqrt { 2t } )+c\quad =\frac { 3 }{ 2\sqrt { 2 } } { tan }^{ -1 }(\sqrt { { 2x }^{ 2 } } )+c

Question 6.
\frac { { x }^{ 2 } }{ 1-{ x }^{ 6 } }
Solution:
put x3 = t,so that 3x²dx = dt
\int { \frac { { x }^{ 2 } }{ 1-{ x }^{ 6 } } dx } \quad =\frac { 1 }{ 3 } \int { \frac { dt }{ 1-{ t }^{ 2 } } \quad =\frac { 1 }{ 6 } log } \left| \frac { 1+t }{ 1-t } \right| +c
=\frac { 1 }{ 6 } log\left| \frac { 1+{ x }^{ 3 } }{ 1-{ x }^{ 3 } } \right| +c

Question 7.
\frac { x-1 }{ \sqrt { { x }^{ 2 }-1 } }
Solution:
I=\int { \frac { x-1 }{ \sqrt { { x }^{ 2 }-1 } } dx } -\int { \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } dx } ,I={ I }_{ 1 }-{ I }_{ 2 }
put x²-1 = t,so that 2x dx = dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 7

Question 8.
\frac { { x }^{ 2 } }{ \sqrt { { x }^{ 6 }+{ a }^{ 6 } } }
Solution:
put x3 = t
so that 3x2dx = dt
I=\frac { 1 }{ 3 } \int { \frac { dt }{ { t }^{ 2 }+{ { (a }^{ 3 }) }^{ 2 } } =\frac { 1 }{ 3 } log\left| t+\sqrt { { t }^{ 2 }+{ a }^{ 6 } } \right| +c }
=\frac { 1 }{ 3 } log|{ x }^{ 3 }+\sqrt { { a }^{ 6 }+{ x }^{ 6 } } |+c

Question 9.
\frac { { sec }^{ 2 }x }{ \sqrt { { tan }^{ 2 }x+4 } }
Solution:
let tanx = t
sec x²dx = dt
I=\int { \frac { dt }{ \sqrt { { t }^{ 2 }+{ (2) }^{ 2 } } } } =log|t+\sqrt { { t }^{ 2 }+4 } |+c
=log|tanx+\sqrt { { tan }^{ 2 }x+4 } |+c

Question 10.
\frac { 1 }{ \sqrt { { x }^{ 2 }+2x+2 } }
Solution:
\int { \frac { 1 }{ \sqrt { { x }^{ 2 }+2x+2 } } dx } =\int { \frac { dx }{ \sqrt { { (x+1) }^{ 2 }+1 } } }
=log|(x+1)+\sqrt { { x }^{ 2 }+2x+2 } |+c

Question 11.
\frac { 1 }{ { 9x }^{ 2 }+6x+5 }
Solution:
\int { \frac { 1 }{ { 9x }^{ 2 }+6x+5 } } =\frac { 1 }{ 9 } \int { \frac { dx }{ { \left( x+\frac { 1 }{ 3 } \right) }^{ 2 }{ +\left( \frac { 2 }{ 3 } \right) }^{ 2 } } }
=\frac { 1 }{ 6 } { tan }^{ -1 }\left( \frac { 3x+1 }{ 2 } \right) +c

Question 12.
\frac { 1 }{ \sqrt { 7-6x-{ x }^{ 2 } } }
Solution:
I=\int { \frac { dx }{ \sqrt { { 4 }^{ 2 }-{ (x+3) }^{ 2 } } } } \quad ={ sin }^{ -1 }\left( \frac { x+3 }{ 4 } \right) +c

Question 13.
\frac { 1 }{ \sqrt { (x-1)(x-2) } }
Solution:
\int { \frac { 1 }{ \sqrt { (x-1)(x-2) } } dx } =\int { \frac { dx }{ \sqrt { { \left( x-\frac { 3 }{ 2 } \right) }^{ 2 }-{ \left( \frac { 1 }{ 2 } \right) }^{ 2 } } } }
=log\left| x-\frac { 3 }{ 2 } +\sqrt { { x }^{ 2 }-3x+2 } \right| +c

Question 14.
\frac { 1 }{ \sqrt { 8+3x-{ x }^{ 2 } } }
Solution:
\int { \frac { dx }{ \sqrt { 8+3x-{ x }^{ 2 } } } } =\int { \frac { dx }{ \sqrt { 8-\left( { x }^{ 2 }-3x \right) } } }
=\int { \frac { dx }{ \sqrt { { \left( \frac { \sqrt { 41 } }{ 2 } \right) }^{ 2 }-{ \left( x-\frac { 3 }{ 2 } \right) }^{ 2 } } } } \quad ={ sin }^{ -1 }\left( \frac { 2x-3 }{ \sqrt { 41 } } \right) +c

Question 15.
\frac { 1 }{ \sqrt { (x-a)(x-b) } }
Solution:
\int { \frac { dx }{ \sqrt { (x-a)(x-b) } } } =\int { \frac { dx }{ { \left( x-\frac { a+b }{ 2 } \right) }^{ 2 }-{ \left( \frac { a-b }{ 2 } \right) }^{ 2 } } }
=log\left| \left( x-\frac { a+b }{ 2 } \right) +\sqrt { (x-a)(x-b) } \right| +c

Question 16.
\frac { 4x+1 }{ \sqrt { { 2x }^{ 2 }+x-3 } }
Solution:
let\quad I=\int { \frac { 4x+1 }{ \sqrt { { 2x }^{ 2 }+x-3 } } } dx
put 2x²+x-3=t
so that (4x+1)dx=dt
let\quad I=\int { \frac { 4x+1 }{ \sqrt { { 2x }^{ 2 }+x-3 } } } dx
\therefore I=\int { \frac { dt }{ \sqrt { t } } } ={ 2t }^{ \frac { 1 }{ 2 } }+c\quad =2\sqrt { { 2x }^{ 2 }+x-3 } +c

Question 17.
\frac { x+2 }{ \sqrt { { x }^{ 2 }-1 } }
Solution:
\int { \frac { x+2 }{ \sqrt { { x }^{ 2 }-1 } } dx } \quad =\int { \frac { x }{ \sqrt { { x }^{ 2 }-1 } } dx } +\int { \frac { 2 }{ \sqrt { { x }^{ 2 }-1 } } dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 17
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 17.1

Question 18.
\frac { 5x-2 }{ 1+2x+{ 3x }^{ 2 } }
Solution:
put 5x-2=A\frac { d }{ dx }(1+2x+3x²)+B
⇒ 6A=5, A=\frac { 5 }{ 6 }-2=2A+B, B=-\frac { 11 }{ 3 }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 18

Question 19.
\frac { 6x+7 }{ \sqrt { (x-5)(x-4) } }
Solution:
\int { \frac { 6x+7 }{ \sqrt { (x-5)(x-4) } } dx } =\int { \frac { (6x+7)dx }{ \sqrt { { x }^{ 2 }-9x+20 } } }
vedantu class 12 maths Chapter 7 Integrals 19
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 19.1

Question 20.
\frac { x+2 }{ \sqrt { 4x-{ x }^{ 2 } } }
Solution:
I=\int { \frac { x-2 }{ \sqrt { 4-{ (x-2) }^{ 2 } } } dx+4\int { \frac { dx }{ \sqrt { 4-{ (x-2) }^{ 2 } } } } }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 20

Question 21.
\frac { x+2 }{ \sqrt { { x }^{ 2 }+2x+3 } }
Solution:
I=\frac { 1 }{ 2 } \int { \frac { 2x+2 }{ \sqrt { { x }^{ 2 }+2x+3 } } dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 21

Question 22.
\frac { x+3 }{ { x }^{ 2 }-2x-5 }
Solution:
I=\frac { 1 }{ 2 } \int { \frac { 2x-2 }{ { x }^{ 2 }-2x-5 } dx } +\int { \frac { dx }{ { x }^{ 2 }-2x-5 } }
vedantu class 12 maths Chapter 7 Integrals 22

Question 23.
\frac { 5x+3 }{ \sqrt { { x }^{ 2 }+4x+10 } }
Solution:
I=\int { \frac { \frac { 5 }{ 2 } (2x+4)+(3-10) }{ \sqrt { { x }^{ 2 }+4x+10 } } dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 23

Question 24.
\int { \frac { dx }{ { x }^{ 2 }+2x+2 } equals }
(a) xtan-1(x+1)+c
(b) (x+1)tan-1x+c
(c) tan-1(x+1)+c
(d) tan-1x+c
Solution:
(b) let\quad I=\int { \frac { dx }{ { x }^{ 2 }+2x+2 } } =\int { \frac { dx }{ (x+1)^{ 2 }+1 } }
= (x+1)tan-1x+c

Question 25.
\int { \frac { dx }{ \sqrt { 9x-{ 4x }^{ 2 } } } equals }
(a) \frac { 1 }{ 9 } { sin }^{ -1 }\left( \frac { 9x-8 }{ 8 } \right) +c
(b) \frac { 1 }{ 2 } { sin }^{ -1 }\left( \frac { 8x-9 }{ 9 } \right) +c
(c) \frac { 1 }{ 3 } { sin }^{ -1 }\left( \frac { 9x-8 }{ 8 } \right) +c
(d) { sin }^{ -1 }\left( \frac { 9x-8 }{ 9 } \right) +c
Solution:
(b) \int { \frac { dx }{ \sqrt { 9x-{ 4x }^{ 2 } } } } =\frac { 1 }{ 2 } \left[ \frac { dx }{ \sqrt { \left( \frac { 9 }{ 8 } \right) ^{ 2 }-\left[ { x }^{ 2 }-{ \frac { 9 }{ 4 } }x+\left( \frac { 9 }{ 8 } \right) ^{ 2 } \right] } } \right]
\frac { 1 }{ 2 } { sin }^{ -1 }\left( \frac { 8x-9 }{ 9 } \right) +c

Exercise 7.5

Integrate the rational function in exercises 1 to 21

Question 1.
\frac { x }{ (x+1)(x+2) }
Solution:
let \frac { x }{ (x+1)(x+2) } ≡ \frac { A }{ x+1 } +\frac { B }{ x+2 }
⇒ x ≡ A(x+2)+B(x+1)….(i)
putting x = -1 & x = -2 in (i)
we get A = 1,B = 2
\therefore \int { \frac { 1 }{ (x+1)(x+2) } dx } =\int { \frac { -1 }{ x+1 } dx } +\int { \frac { 2 }{ x+2 } dx }
=-log|x+1| + 2log|x+2|+c

Question 2.
\frac { 1 }{ { x }^{ 2 }-9 }
Solution:
let \frac { 1 }{ { x }^{ 2 }-9 } =\frac { 1 }{ (x-3)(x+3) } \equiv \frac { A }{ x-3 } +\frac { B }{ x+3 }
⇒ x ≡ A(x+3)+B(x-3)…(i)
put x = 3, -3 in (i)
we get A=\frac { 1 }{ 6 } & B=-\frac { 1 }{ 6 }
\therefore \int { \frac { 1 }{ { x }^{ 2 }-9 } dx } =\frac { 1 }{ 6 } \int { \left[ \frac { 1 }{ x-3 } -\frac { 1 }{ x+3 } \right] dx }
=\frac { 1 }{ 6 } log\left| \frac { x-3 }{ x+3 } \right| +c

Question 3.
\frac { 3x-1 }{ (x-1)(x-2)(x-3) }
Solution:
Let \frac { 3x-1 }{ (x-1)(x-2)(x-3) } =\frac { A }{ x-1 } +\frac { B }{ x-2 } +\frac { C }{ x-3 }
⇒ 3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(-2)…..(i)
put x = 1,2,3 in (i)
we get A = 1,B = -5 & C = 4
\therefore I=\int { \frac { 1 }{ x-1 } dx } -5\int { \frac { 1 }{ x-2 } dx } +4\int { \frac { 1 }{ x-3 } dx }
=log|x-1| – 5log|x-2| + 4log|x+3| + C

Question 4.
\frac { x }{ (x-1)(x-2)(x-3) }
Solution:
let \frac { x }{ (x-1)(x-2)(x-3) } =\frac { A }{ x-1 } +\frac { B }{ x-2 } +\frac { C }{ x-3 }
⇒ x ≡ A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)…(i)
put x = 1,2,3 in (i)
A=\frac { 1 }{ 2 } ,B=-2,C=\frac { 3 }{ 2 }
\therefore I=\frac { 1 }{ 2 } \int { \frac { dx }{ x-1 } } -2\int { \frac { dx }{ x-2 } } +\frac { 3 }{ 2 } \int { \frac { dx }{ x-3 } }
=\frac { 1 }{ 2 } log|x-1|-2log|x-2|+\frac { 3 }{ 2 } log|x-3|+c

Question 5.
\frac { 2x }{ { x }^{ 2 }+3x+2 }
Solution:
let \frac { 2x }{ { x }^{ 2 }+3x+2 } =\frac { 2x }{ (x+1)(x+2) } =\frac { A }{ x+1 } +\frac { B }{ x+2 }
⇒ 2x = A(x+2)+B(x+1)…(i)
put x = -1, -2 in (i)
we get A = -2, B = 4
\therefore \int { \frac { 2x }{ { x }^{ 2 }+3x+2 } dx } =-2\int { \frac { dx }{ x+1 } } +4\int { \frac { dx }{ x+2 } }
=-2log|x+1|+4log|x+2|+c

Question 6.
\frac { 1-{ x }^{ 2 } }{ x(1-2x) }
Solution:
\frac { 1-{ x }^{ 2 } }{ (x-2{ x }^{ 2 }) } is an improper fraction therefore we
convert it into a proper fraction. Divide 1 – x² by x – 2x² by long division.
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 6
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 6.1

Question 7.
\frac { x }{ \left( { x }^{ 2 }+1 \right) \left( x-1 \right) }
Solution:
let \frac { x }{ \left( { x }^{ 2 }+1 \right) \left( x-1 \right) } =\frac { A }{ x-1 } +\frac { Bx+C }{ { x }^{ 2 }+1 }
⇒ x = A(x²+1)+(Bx+C)(x-1)
Put x = 1,0
⇒ A=\frac { 1 }{ 2 } C=\frac { 1 }{ 2 } \Rightarrow B=-\frac { 1 }{ 2 }
\therefore I=\frac { 1 }{ 2 } \int { \frac { dx }{ x-1 } } -\frac { 1 }{ 2 } \int { \frac { x }{ { x }^{ 2 }+1 } dx } +\frac { 1 }{ 2 } \int { \frac { dx }{ { x }^{ 2 }+1 } }
=\frac { 1 }{ 2 } log(x-1)-\frac { 1 }{ 4 } log({ x }^{ 2 }+1)+\frac { 1 }{ 2 } { tan }^{ -1 }x+c

Question 8.
\frac { x }{ { \left( x-1 \right) }^{ 2 }\left( x+2 \right) }
Solution:
\frac { x }{ { \left( x-1 \right) }^{ 2 }\left( x+2 \right) } =\frac { A }{ x-1 } +\frac { B }{ { \left( x-1 \right) }^{ 2 } } +\frac { C }{ x+2 }
⇒ x ≡ A(x-1)(x+2)+B(x+2)+C(x-1)² …(i)
put x = 1, -2
we get B=\frac { 1 }{ 3 } ,C=\frac { -2 }{ 9 }
\therefore I=\frac { 2 }{ 9 } \int { \frac { 1 }{ x-1 } dx } +\frac { 1 }{ 3 } \int { \frac { 1 }{ { (x-1) }^{ 2 } } dx } -\frac { 2 }{ 9 } \int { \frac { 1 }{ x+2 } dx }
=\frac { 2 }{ 9 } log\left| \frac { x-1 }{ x+2 } \right| -\frac { 1 }{ 3\left( x-1 \right) } +c

Question 9.
\frac { 3x+5 }{ { x }^{ 3 }-{ x }^{ 2 }-x+1 }
Solution:
let \frac { 3x+5 }{ { x }^{ 2 }(x-1)-1(x-1) }
\frac { 3x+5 }{ (x-1)^{ 2 }(x+1) } =\frac { A }{ x-1 } +\frac { B }{ { (x-1) }^{ 2 } } +\frac { C }{ x+1 }
⇒ 3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)
put x = 1,-1,0
we get B=4,C=\frac { 1 }{ 2 } ,A=-\frac { 1 }{ 2 }
\therefore I=-\frac { 1 }{ 2 } \int { \frac { dx }{ (x-1) } } +4\frac { dx }{ { (x-1) }^{ 2 } } +\frac { 1 }{ 2 } \int { \frac { dx }{ x+1 } }
=\frac { 1 }{ 2 } log\left| \frac { x+1 }{ x-1 } \right| -\frac { 4 }{ x-1 } +c

Question 10.
\frac { 2x-3 }{ ({ x }^{ 2 }-1)(2x+3) }
Solution:
\frac { 2x-3 }{ ({ x }^{ 2 }-1)(2x+3) } =\frac { 2x-3 }{ (x-1)(x+1)(2x+3) }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 10

Question 11.
\frac { 5x }{ (x-1)({ x }^{ 2 }-4) }
Solution:
let \frac { 5x }{ (x-1)({ x }^{ 2 }-4) } =\frac { 5x }{ (x+1)(x+2)(x-2) }
byjus class 12 maths Chapter 7 Integrals 11

Question 12.
\frac { { x }^{ 3 }+x+1 }{ { x }^{ 2 }-1 }
Solution:
\frac { { x }^{ 3 }+x+1 }{ { x }^{ 2 }-1 } =x+\frac { 2x+1 }{ (x+1)(x-1) }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 12
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 12.1

Question 13.
\frac { 2 }{ (1-x)(1+{ x }^{ 2 }) }
Solution:
\frac { 2 }{ (1-x)(1+{ x }^{ 2 }) } =\frac { A }{ 1-x } +\frac { Bx+C }{ 1+{ x }^{ 2 } }
⇒ 2 = A(1+x²) + (Bx+C)(1 -x) …(i)
Putting x = 1 in (i), we get; A = 1
Also 0 = A – B and 2 = A + C ⇒B = A = 1 & C = 1
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 13

Question 14.
\frac { 3x-1 }{ { (x+2) }^{ 2 } }
Solution:
\frac { 3x-1 }{ { (x+2) }^{ 2 } } \equiv \frac { A }{ x+1 } +\frac { B }{ { (x+2) }^{ 2 } }
=>3x – 1 = A(x + 2) + B …(i)
Comparing coefficients A = -1 and B = -7
\therefore \int { \frac { 3x-1 }{ { (x+2) }^{ 2 } } dx } =3\int { \frac { dx }{ x+2 } } -7\int { \frac { dx }{ { (x+2) }^{ 2 } } }
=3log|x+2|+\frac { 7 }{ x+2 } +c

Question 15.
\frac { 1 }{ { x }^{ 4 }-1 }
Solution:
\frac { 1 }{ { x }^{ 4 }-1 } =\frac { A }{ x+1 } +\frac { B }{ x-1 } +\frac { Cx+D }{ { x }^{ 2 }+1 }
⇒ 1 ≡ A(x-1)(x²+1) + B(x+1)(x²+1) + (Cx+D)(x+1)(x-1) ….(i)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 15
byjus class 12 maths Chapter 7 Integrals 15.1

Question 16.
\frac { 1 }{ x({ x }^{ n }+1) }
[Hint : multiply numerator and denominator by xn-1 and put xn = t ]
Solution:
\frac { { x }^{ n-1 } }{ x.{ x }^{ n-1 }({ x }^{ n }+1) } =\frac { { x }^{ n-1 } }{ { x }^{ n }({ x }^{ n }+1) }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 16

Question 17.
\frac { cosx }{ (1-sinx)(2-sinx) }
Solution:
put sinx = t
so that cosx dx = dt
\therefore I=\int { \frac { 1 }{ (1-t)(2-t) } dt }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 17

Question 18.
\frac { \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+2 \right) }{ \left( { x }^{ 2 }+3 \right) \left( { x }^{ 2 }+4 \right) }
Solution:
put x²=y
I=1-\frac { 2(2y+5) }{ (y+3)(y+4) }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 18

Question 19.
\frac { 2x }{ ({ x }^{ 2 }+1)({ x }^{ 2 }+3) }
Solution:
put x²=y
so that 2xdx = dy
\therefore \int { \frac { 2x }{ ({ x }^{ 2 }+1)({ x }^{ 2 }+3) } dx } =\int { \frac { dy }{ (y+1)(y+3) } }
byjus class 12 maths Chapter 7 Integrals 19

Question 20.
\frac { 1 }{ x({ x }^{ 4 }-1) }
Solution:
put x4 = t
so that 4x3 dx = dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 20

Question 21.
\frac { 1 }{ { e }^{ x }-1 }
Solution:
Let ex = t ⇒ ex dx = dt
⇒ dx=\frac { dt }{ t }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 21

Question 22.
choose the correct answer in each of the following :
\int { \frac { xdx }{ (x-1)(x-2) } equals }
(a) log\left| \frac { { (x-1) }^{ 2 } }{ x-2 } \right| +c
(b) log\left| \frac { { (x-2) }^{ 2 } }{ x-1 } \right| +c
(c) log\left| \left( \frac { x-{ 1 }^{ 2 } }{ x-2 } \right) \right| +c
(d) log|(x-1)(x-2)|+c
Solution:
(b) \int { \frac { x }{ (x-1)(x-2) } dx } =\int { \left[ \frac { -1 }{ x-1 } +\frac { 2 }{ x-2 } \right] dx }
log\left| \frac { { (x-2) }^{ 2 } }{ x-1 } \right| +c

Question 23.
\int { \frac { dx }{ x({ x }^{ 2 }+1) } equals }
(a) log|x|-\frac { 1 }{ 2 } log({ x }^{ 2 }+1)+c
(b) log|x|+\frac { 1 }{ 2 } log({ x }^{ 2 }+1)+c
(c) -log|x|+\frac { 1 }{ 2 } log({ x }^{ 2 }+1)+c
(d) \frac { 1 }{ 2 } log|x|+log({ x }^{ 2 }+1)+c
Solution:
(a) let \frac { 1 }{ x\left( { x }^{ 2 }+1 \right) } =\frac { A }{ x } +\frac { Bx+C }{ { x }^{ 2 }+1 }
⇒ 1 = A(x²+1)+(Bx+C)(x)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 22

Exercise 7.6

Integrate the functions in Exercises 1 to 22.

Question 1.
x sinx
Solution:
By part integration
∫x sinx dx = x(-cosx) – ∫1(-cosx)dx
=-x cosx + ∫cosxdx
=-x cosx + sinx + c

Question 2.
x sin3x
Solution:
∫x sin3x dx = x\left( -\frac { cos3x }{ 3 } \right) -\int { 1 } .\left( \frac { -cos3x }{ 3 } \right) dx
=-\frac { 1 }{ 3 } x\quad cos3x+\frac { 1 }{ 9 } sin3x+c

Question 3.
{ x }^{ 2 }{ e }^{ x }
Solution:
\int { { x }^{ 2 }{ e }^{ x } } dx={ x }^{ 2 }{ e }^{ x }-2{ x }{ e }^{ x }+2{ e }^{ x }+c
={ e }^{ x }\left( { x }^{ 2 }-2x+2 \right) +c

Question 4.
x logx
Solution:
\int { xlogx\quad dx } =logx\int { xdx } -\int { \left[ \frac { d }{ dx } (logx)\int { xdx } \right] dx }
=\frac { { x }^{ 2 } }{ 2 } logx-\frac { 1 }{ 2 } \int { x\quad dx } =\frac { { x }^{ 2 } }{ 2 } logx-\frac { 1 }{ 4 } { x }^{ 2 }+c

Question 5.
x log2x
Solution:
\int { x\quad log2xdx } =(log2x)\frac { { x }^{ 2 } }{ 2 } -\int { \frac { 1 }{ 2x } } .2\left( \frac { { x }^{ 2 } }{ 2 } \right) dx
=\frac { { x }^{ 2 } }{ 2 } log|2x|-\frac { 1 }{ 2 } \int { xdx } =\frac { { x }^{ 2 } }{ 2 } log|2x|-\frac { { x }^{ 2 } }{ 4 } +c

Question 6.
{ x }^{ 2 }logx
Solution:
\int { { x }^{ 2 }logxdx } =log|x|\left( \frac { { x }^{ 3 } }{ 3 } \right) -\int { \frac { 1 }{ x } } \left( \frac { { x }^{ 3 } }{ 3 } \right) dx
=\frac { { x }^{ 3 } }{ 3 } log|x|-\frac { 1 }{ 3 } \int { { x }^{ 2 }dx } =\frac { { x }^{ 3 } }{ 3 } log|x|-\frac { { x }^{ 3 } }{ 9 } +c

Question 7.
x\quad { sin }^{ -1 }x
Solution:
I=x\quad { sin }^{ -1 }x.\left( \frac { { x }^{ 2 } }{ 2 } \right) -\int { \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } } .\frac { { x }^{ 2 } }{ 2 } dx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 7

Question 8.
x\quad { tan }^{ -1 }x
Solution:
I=x\quad { tan}^{ -1 }x.\left( \frac { { x }^{ 2 } }{ 2 } \right) -\int { \frac { 1 }{ \sqrt { 1+{ x }^{ 2 } } } } .\frac { { x }^{ 2 } }{ 2 } dx
=\frac { { x }^{ 2 } }{ 2 } { tan }^{ -1 }x-\frac { 1 }{ 2 } \int { \left( 1-\frac { 1 }{ 1+{ x }^{ 2 } } \right) dx }
=\frac { { x }^{ 2 } }{ 2 } { tan }^{ -1 }x-\frac { 1 }{ 2 } x+\frac { 1 }{ 2 } { tan }^{ -1 }x+c

Question 9.
x\quad { cos }^{ -1 }x
Solution:
let I = \int { x } { cos }^{ -1 }xdx=\int { { cos }^{ -1 }x } .xdx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 9

Question 10.
{ (sin }^{ -1 }{ x })^{ 2 }
Solution:
put\quad { sin }^{ -1 }x=\theta \Rightarrow x=sin\theta \Rightarrow dx=cos\theta d\theta
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 10

Question 11.
\frac { x\quad { cos }^{ -1 }x }{ \sqrt { 1-{ x }^{ 2 } } }
Solution:
put\quad { cos }^{ -1 }x=t\quad so\quad that\frac { x\quad { cos }^{ -1 }x }{ \sqrt { 1-{ x }^{ 2 } } } dx=dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 11

Question 12.
x sec²x
Solution:
∫x sec²x dx =x(tanx)-∫1.tanx dx
= x tanx+log cosx+c

Question 13.
{ ta }n^{ -1 }x
Solution:
\int { { tan }^{ -1 }xdx } =x{ tan }^{ -1 }x-\frac { 1 }{ 2 } \int { \frac { 2x }{ 1+{ x }^{ 2 } } dx }
=x{ tan }^{ -1 }x-\frac { 1 }{ 2 } log|1+{ x }^{ 2 }|+c

Question 14.
x(logx)²
Solution:
∫x(logx)² dx
=\frac { { x }^{ 2 } }{ 2 } { (logx) }^{ 2 }-\left[ (logx)\frac { { x }^{ 2 } }{ 2 } -\int { \frac { 1 }{ x } \frac { { x }^{ 2 } }{ 2 } dx } \right]
=\frac { { x }^{ 2 } }{ 2 } { (logx) }^{ 2 }-\frac { { x }^{ 2 } }{ 2 } logx+\frac { 1 }{ 4 } { x }^{ 2 }+c

Question 15.
(x²+1)logx
Solution:
∫(x²+1)logx dx
=logx\left( \frac { { x }^{ 3 } }{ 3 } +x \right) -\int { \frac { 1 }{ x } \left( \frac { { x }^{ 3 } }{ 3 } +x \right) dx }
=\left( \frac { { x }^{ 3 } }{ 3 } +x \right) logx-\frac { { x }^{ 3 } }{ 9 } -x+c

Question 16.
{ e }^{ x }(sinx+cosx)
Solution:
put\quad { e }^{ x }sinx=t\Rightarrow { e }^{ x }(sinx+cosx)dx=dt
\therefore \int { { e }^{ x }(sinx+cosx)dx } =\int { dt } =t+c
={ e }^{ x }sinx+c

Question 17.
\frac { { xe }^{ x } }{ { (1+x) }^{ 2 } }
Solution:
\int { \frac { { xe }^{ x } }{ { (1+x) }^{ 2 } } }
tiwari academy class 12 maths Chapter 7 Integrals 17

Question 18.
\frac { { e }^{ x }(1+sinx) }{ 1+cosx }
Solution:
I=\int { { e }^{ x } } \left[ \frac { 1+2sin\frac { x }{ 2 } cos\frac { x }{ 2 } }{ 2{ cos }^{ 2 }\frac { x }{ 2 } } \right] dx
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 18

Question 19.
{ e }^{ x }\left( \frac { 1 }{ x } -\frac { 1 }{ { x }^{ 2 } } \right)
Solution:
put \frac { { e }^{ x } }{ x } =t\Rightarrow { e }^{ x }\left( \frac { 1 }{ x } -\frac { 1 }{ { x }^{ 2 } } \right) dx=dt
\therefore I=\int { dt } =t+c=\frac { { e }^{ x } }{ x } +c

Question 20.
\frac { { (x-2)e }^{ x } }{ { (x-1) }^{ 3 } }
Solution:
I=\int { { e }^{ x }\left[ \frac { 1 }{ { (x-1) }^{ 2 } } -\frac { 2 }{ { (x-1) }^{ 3 } } \right] dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 19

Question 21.
{ e }^{ 2x }sinx
Solution:
let I=\int { { e }^{ 2x }sinx }
={ e }^{ 2x }(-cosx)-\int { 2{ e }^{ 2x }(-cosx)dx }
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 21

Question 22.
{ sin }^{ -1 }\left( \frac { 2x }{ 1+{ x }^{ 2 } } \right)
Solution:
Put x = tan t
so that dx = sec² t dt
tiwari academy class 12 maths Chapter 7 Integrals 22

Choose the correct answer in exercise 23 and 24

Question 23.
\int { { x }^{ 2 }{ e }^{ { x }^{ 3 } } } dx\quad equals
(a) \frac { 1 }{ 3 } { e }^{ { x }^{ 3 } }+c
(b) \frac { 1 }{ 3 } +{ e }^{ { x }^{ 2 } }+c
(c) \frac { 1 }{ 2 } { e }^{ { x }^{ 3 } }+c
(d) \frac { 1 }{ 2 } { e }^{ { x }^{ 2 } }+c
Solution:
(a) let x³ = t
⇒3x² dx = dt
\therefore \int { { x }^{ 2 }{ e }^{ { x }^{ 3 } }dx } =\frac { 1 }{ 3 } \int { { e }^{ t }dt } =\frac { 1 }{ 3 } { e }^{ t }+c=\frac { 1 }{ 3 } { e }^{ { x }^{ 3 } }+c

Question 24.
\int { { e }^{ x }secx(1+tanx) } dx\quad equals
(a) { e }^{ x }cosx+c
(b) { e }^{ x }secx+c
(c) { e }^{ x }sinx+c
(d) { e }^{ x }tanx+c
Solution:
(b) \int { { e }^{ x }(secx+secx\quad tanx)dx } ={ e }^{ x }secx+c

Exercise 7.7

Integral the function in exercises 1 to 9

Question 1.
\sqrt { 4-{ x }^{ 2 } }
Solution:
let\quad I=\int { \sqrt { 4-{ x }^{ 2 } } } dx=\int { \sqrt { { (2) }^{ 2 }-{ x }^{ 2 } } dx }
=\frac { x\sqrt { 4-{ x }^{ 2 } } }{ 2 } +2{ sin }^{ -1 }\left( \frac { x }{ 2 } \right) +c

Question 2.
\sqrt { 1-{ 4x }^{ 2 } }
Solution:
\int { \sqrt { 1-{ 4x }^{ 2 } } } dx=2\int { \sqrt { { \left( \frac { 1 }{ 2 } \right) }^{ 2 }-{ x }^{ 2 } } } dx
=\frac { x\sqrt { 1-{ 4x }^{ 2 } } }{ 2 } +\frac { 1 }{ 4 } { sin }^{ -1 }(2x)+c

Question 3.
\sqrt { { x }^{ 2 }+4x+6 }
Solution:
\int { \sqrt { { x }^{ 2 }+4x+6 } } dx=\int { \sqrt { { (x+2) }^{ 2 }+{ (\sqrt { 2 } ) }^{ 2 } } } dx
=\frac { x+2 }{ 2 } \sqrt { { x }^{ 2 }+4x+6 } +log\left| (x+2)+\sqrt { { x }^{ 2 }+4x+6 } \right| +c

Question 4.
\sqrt { { x }^{ 2 }+4x+1 }
Solution:
\int { \sqrt { { x }^{ 2 }+4x+1 } } dx=\int { \sqrt { { (x+2) }^{ 2 }-{ (\sqrt { 3 } ) }^{ 2 } } } dx
=\frac { x+2 }{ 2 } \sqrt { { x }^{ 2 }+4x+1 } -\frac { 3 }{ 2 } log\left| (x+2)+\sqrt { { x }^{ 2 }+4x+1 } \right| +c

Question 5.
\sqrt { 1-4x-{ x }^{ 2 } }
Solution:
\int { \sqrt { 1-4x-{ x }^{ 2 } } } dx=\int { \sqrt { { (5) }^{ 2 }-{ (x+2) }^{ 2 } } dx }
=\frac { x+2 }{ 2 } \sqrt { 5-{ (x+2) }^{ 2 } } dx

Question 6.
\sqrt { { x }^{ 2 }+4x-5 }
Solution:
\int { \sqrt { { x }^{ 2 }+4x-5 } } dx=\int { \sqrt { { (x+2) }^{ 2 }-{ (3) }^{ 2 } } } dx
=\frac { x+2 }{ 2 } \sqrt { { x }^{ 2 }+4x-5 } -\frac { 9 }{ 2 } log|x+2+\sqrt { { x }^{ 2 }+4x-5 } |+c

Question 7.
\sqrt { 1+3x-{ x }^{ 2 } }
Solution:
\int { \sqrt { 1-\left( { x }^{ 2 }-3x \right) } } dx
=\int { \sqrt { { \left( \frac { \sqrt { 13 } }{ 2 } \right) }^{ 2 }-{ \left( x-\frac { 3 }{ 2 } \right) }^{ 2 } } } dx
=\frac { 2x-3 }{ 4 } \sqrt { 1+3x-{ x }^{ 2 } } +\frac { 13 }{ 8 } { sin }^{ -1 }\left[ \frac { 2x-3 }{ \sqrt { 3 } } \right] +c

Question 8.
\sqrt { { x }^{ 2 }+3x }
Solution:
\int { \sqrt { { x }^{ 2 }+3x } } dx=\int { \sqrt { { \left( x+\frac { 3 }{ 2 } \right) }^{ 2 }-{ \left( \frac { 3 }{ 2 } \right) }^{ 2 } } } dx
=\frac { 2x+3 }{ 4 } \sqrt { { x }^{ 2 }+3x } -\frac { 9 }{ 8 } log\left| x+\frac { 3 }{ 2 } +\sqrt { { x }^{ 2 }+3x } \right| +c

Question 9.
\sqrt { 1+\frac { { x }^{ 2 } }{ 9 } }
Solution:
\int { \sqrt { 1+\frac { { x }^{ 2 } }{ 9 } } } dx=\frac { 1 }{ 3 } \int { \sqrt { { x }^{ 2 }+{ 3 }^{ 2 } } }
=\frac { 1 }{ 6 } \left[ x\sqrt { { x }^{ 2 }+9 } +9log|x+\sqrt { { x }^{ 2 }+9 } | \right] +c

Choose the correct answer in the Exercises 10 to 11:

Question 10.
\int { \sqrt { 1+{ x }^{ 2 } } } dx\quad is\quad equal\quad to
(a) \frac { x }{ 2 } \sqrt { 1+{ x }^{ 2 } } +\frac { 1 }{ 2 } log|x+\sqrt { 1+{ x }^{ 2 } } |+c
(b) \frac { 2 }{ 3 } { \left( 1+{ x }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+c
(c) \frac { 2 }{ 3 } x{ \left( 1+{ x }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+c
(d) \frac { { x }^{ 2 } }{ 2 } \sqrt { 1+{ x }^{ 2 } } +\frac { 1 }{ 2 } { x }^{ 2 }log\left| x+\sqrt { 1+{ x }^{ 2 } } \right| +c
Solution:
(a) \int { \sqrt { 1+{ x }^{ 2 } } } dx
=\frac { x }{ 2 } \sqrt { 1+{ x }^{ 2 } } +\frac { 1 }{ 2 } log(x+\sqrt { 1+{ x }^{ 2 } } )+c

Question 11.
\int { \sqrt { { x }^{ 2 }-8x+7 } } dx\quad is\quad equal\quad to
NCERT Solutions for Class 12 Maths Chapter 7 Integrals 11
Solution:
(d) \int { \sqrt { { x }^{ 2 }-8x+7 } } dx=\int { \sqrt { { (x-4) }^{ 2 }-{ (3) }^{ 2 } } } dx
=\frac { x-4 }{ 2 } \sqrt { { x }^{ 2 }-8x+7 } -\frac { 9 }{ 2 } log\left| (x-4)+\sqrt { { x }^{ 2 }+8x+7 } \right| +c


Comments

Popular posts from this blog

Grammar Exercise - Tag Questions

She is collecting stickers, isn't she? We often watch TV in the afternoon, don't we? You have cleaned your bike, haven't you? John and Max don't like maths, do they? Peter played handball yesterday, didn't he? They are going home from school, aren't they? Mary didn't do her homework last Monday, did she? He could have bought a new car, couldn't he? Kevin will come tonight, won't he? I'm clever, aren't I? Choose the correct word. They're working on the project, aren't they? It wasn't my fault was it? Bill got what he wanted, didn't he? It won't be hard to convince her, will it? We can't leave him alone, can we? We've done our job, haven't we? You should apologize for what you have done, shouldn't you? They didn't start at two o'clock, did they? They finish work at five o'clock, don't they ? She doesn't like him, does she ? Difficult Question Tags Exercises

VERB AND FORMS OF VERB WITH HINDI MEANING_List of Verb in hindi

Verbs What is a verb? Verbs are the action words in a sentence that describe what the subject is doing. Along with nouns, verbs are the main part of a sentence or phrase, telling a story about what is taking place.     Verbs are words that express action or state of being. There are three types of verbs:  action verbs, linking verbs, and helping verbs .  Action verbs are words that express action (give, eat, walk, etc.) or possession (have, own, etc.). Action verbs can be either transitive or intransitive. List of Verb in hindi Present Hindi Meaning   Past Past Participle Buy खरीदना Bought Bought Build बांधना Built Built burn जलना Burnt Burnt Bend झुकना Bent Bent Bring लाना brought brought Become होना Became Become Come आना Came Come Catch पकड़ना Caught Caught Do करना Did Done Dream ख्वाब देखना Dreamt Dreamt Arise उठना / जागना Arose Arisen Be होना Was, were Been Bear सहन करना Bore Bore Beat मारना Beat Beat Bite काटना Bit Bitten Break तोडना Broke Broken Choose चुनना Chose Chosen Draw चि

Synonym-Antonym list with Hindi Meaning

S.No Word शब्द Synonym Antonym 1 Abate रोक-थाम करना moderate, decrease aggravate, supplement 2 Abject अधम despicable, servile, commendable, praiseworthy 3 Abjure त्यागना forsake, renounce, approve, sanction 4 Abortive निष्फल vain, unproductive, effectual productive 5 Absolve दोषमुक्त करना pardon, forgive , compel, accuse 6 Accord सहमति agreement, harmony , disagreement, discord 7 Acrimony रूखापन harshness, bitterness, courtesy, benevolence 8 Adamant अटल stubborn, inflexible , flexible, soft 9 Adherent पक्षपाती follower, disciple , rival, adversary 10 Adjunct सहायक joined, added , separated, subtracted 11 Admonish धिक्कारना counsel, reprove , approve, applaud 12 Adversity विपत्ति misfortune, calamity , prosperity, fortune 13 Alien विदेशी foreigner, outsider , native, resident 14 Allay निराकरणकरना pacify, soothe , aggravate, excite 15 Alleviate कम करना abate, relieve , aggrava